مدل‌سازی هیدرواقلیمی نوسانات تراز دریاچه ارومیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی مقطع دکترا / تخصصی آب وهواشناسی،واحدعلوم تحیقات،دانشگاه آزاداسلامی،تهران،ایران

2 استاد/ گروه جغرافیا ، دانشگاه خوارزمی ، تهران، ایران

3 دانشیار/ گروه جغرافیا، واحدعلوم تحقیات، دنشگاه ازاد اسلامی،اهواز، ایران

4 استادیار / گروه جفرافیا،واحدعلوم تحقیات،دانشگاه ازاداسلامی، تهران،ایران

چکیده

هدف اصلی این تحقیق بررسی عوامل مؤثر بر نوسانات ترازآب دریاچه ارومیه است بدین منظوربرای بررسی ارتباط نوسانهای تراز آب دریاچه ارومیه با پارامترهای اقلیمی و هیدرولوژی،( بارش، درجه حرارت، دبی رودخانه‌ها و ...)استفاده شد.از داده‌های تراز آب دریاچه ارومیه برای دوره آماری48 ساله،27 ایستگاه هواشناسی برای متغیربارش ودرجه حرارت استفاده گردید.برای تنظیم داده‌های سطح ایستابی آبهای زیرزمینی، ازمیان1054حلقه چاه،123حلقه که دردوره آماری کاملی داشتندانتخاب ،برای اطلاع ازهمگنی و تصادفی بودن دادهها واحتمال هرگونه رونددرسریهای زمانی، از آزمون ناپارامتریکی ران تست استفاده گردید.تصادفی بودن متغیرها با احتمال خطای 05/0 مورد بررسی قرار گرفت و از همگن بودن آن‌ها اطمینان حاصل شد. برای بررسی روند،جهش و تغییردرمتغیرهای مستقل بارش، درجه حرارت، دبی رودخانه و سطح ایستابی چاه‌ها، ازآزمون آماری من-کندال استفاده شده است.بررسی نمودار نشان دادکه تغییرات میانگین درجه حرارت سالانه طی دوره مطالعاتی روند معناداری را دنبال نمیکند.نمودار مربوط به بارش سالانه حوضه آبریزدریاچه ارومیه روند کاهشی و معناداری را دردوره آماری نشان داد.نتایج بررسی روند تغییرات دبی نشان دادکه تغییرات دبی طی دوره دارای روند معنی‌داری بوده وبا جهشی از همان ابتدای دوره آماری، روندی کاهشی را دنبال نموده است. تغییرات سطح ایستابی چاه‌های مشاهده‌ای نیز دارای روند معنی‌داری بوده و با جهشی درسال 1385، روندی کاهشی را دنبال کرده. نتایج آزمون ضرایب همبستگی پیرسون مشخص کردکه بین متغیرهای مستقل (درجه حرارت، بارش، دبی رودخانه و سطح ایستابی) و نوسان‌های سطح آب دریاچه، همبستگی نسبتاً قوی وجود دارددرسطح 05/0 معناداربوده و نشان‌دهنده اعتبار و قدرت بالای رابطه خطی بین ترازآب و میزان تأثیرپذیری این متغیرازمتغیرهای مستقل است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hydroclimatic modeling of water level fluctuations of Urmia Lake

نویسندگان [English]

  • Masoumeh Soufi 1
  • Behlul Alijani 2
  • Reza Borna 3
  • Farideh Asadian 4
1 PhD student in climatology, Science and Research Unit, Islamic Azad University, Tehran, Iran .
2 Professor, Department of Geography, Kharazmi University, Tehran, Iran.
3 Assistant Professor of Geography, Department of Science and Research, Islamic Azad University, Tehran.
4 Assistant Professor of Geography, Department of Science and Research, Islamic Azad University, Tehran
چکیده [English]

The main purpose of this study is to investigate the factors affecting water level fluctuations in Urmia Lake. For this purpose, it was used to investigate the relationship between water level fluctuations in Urmia Lake with climatic and hydrological parameters (precipitation, temperature, river flow, etc.). Urmia Lake water level was used for 48-year statistical period, 27 meteorological stations for variable precipitation and temperature. , From non-parametric Ran Tess test To investigate the trend, mutations and changes in the independent variables of precipitation, temperature, river flow and stagnant surface of the wells, my-Kendall statistical test was used. Regarding the annual rainfall, the Urmia catchment area showed a decreasing and significant trend in the statistical period. The results of the study of the Dubai change trend showed that the Dubai changes during the period had a significant trend and followed a decreasing trend with a jump from the beginning of the statistical period. The change in the static level of the observation wells also has a significant trend and with a jump in 2006, it has followed a decreasing trend. The results of Pearson correlation coefficients test showed that there is a relatively strong correlation between independent variables (temperature, precipitation, river flow and stagnant water level) and lake water level fluctuations at the level of 0.05 and indicates the validity and high strength of the linear relationship between The water level and the degree of impact of this variable are independent variables.

کلیدواژه‌ها [English]

  • Water levels variations
  • Water flow
  • Modeling
  • Water level
  • Urmia Lake
  • Babaei M, Ghaderi R, Badrakhanjad A, and Azadfalah Z (2017) Identification and prioritization of factors affecting the drying of water in Lake Urmia based on the Delphi model. Journal of Natural Geography 10(35):101-114 (In Persian)
  • Bayazidi A, Oladi B, and Abbasi N (2011) Analysis of questionnaire data with SPSS software. Tehran, Abed Publications, second edition, 127 pages (In Persian)
  • Basati S (2006) Processing and zoning of average temperatures maximum and highest temperatures in Iran. Master's Thesis, Geography Majoring in Climatology, Supervisor Firooz Mojarad, Razi University of Kermanshah (In Persian)
  • Hejazizadeh F and Parvin N (2009) Investigation of changes in temperature and rainfall in Tehran during the last half century. Geography and Environmental Planning, Preface No. 1388:43-56 (In Persian)
  • Hassanzadeh A and Zarghami M (2011) Modeling the effect of surface water flow on reducing the level of Lake Urmia with the help of system dynamics. Journal of Civil and Environmental Engineering, University of Tabriz 41(2):23-35 (In Persian)
  • Hosseini Sh, Ghaffarzadeh H, Abedi Z, Shiry N (2014) Investigation of climate change phenomenon and its impacts on the use of natural lands of Gorgan River Basin. Natural Environment (Natural Resources of Iran) 67(1):25-39 (In Persian)
  • Hayatzadeh M and Dedicated M (2016) Monitoring and evaluation of land use change process in fakhrabad watershed of Mehriz Yazd using remote sensing. National Conference on Iranian Watershed Science and Engineering, Volume 11 (In Persian)
  • Heydarian M H, Dehbandi N, and Dasi B (2016) Evaluation of the effect of each sub-basin of Urmia Lake catchment area on sudden reduction of lake water level by relying on water balance. International Conference on Geographical Consequences and Environmental Impacts of Lake Urmia, Tabriz, Tabriz University (In Persian)
  • Dehdari S and Armand N (2018) Revealing the land use changes of Karun 3 and 4 dams using satellite images. Journal of Rangeland and Watershed Management 71(1):96-85 (In Persian)
  • Rahimzadeh F (2011) Statistical methods in meteorological and climatological studies. Tehran, Seyed Baqer Hosseini Publications, first edition, 183 pages (In Persian)
  • Asaker H and Ashrafi S (2011) Modeling the number of annual rainfall days based on the relative humidity and annual temperature of Zanjan. Sepehr Magazine 20(80):13-18 (In Persian)
  • Mirzaei-Zadeh V and Mahdavi A, Kermanshahi A, and Jafarzadeh A A (1389) Application of integrated model of automatic cells and Markov chain in simulation of spatial-temporal pattern of forest cover change (Case study: Malekshahi city- Ilam province). Ecology of Iran's Forests 3(5):42-52 (In Persian)
  • Nouri F, Visi H, and Mirzaei R (2018) Changes in land use and ecological services in Sahand Dam area using remote sensing technique. Environmental Sciences Quarterly, 16(1):207-224 (In Persian)
  • Hadian F, Jafari R, and Yaghmaei L (2016) A study of the effects of establishing Baghkol dam on land change/land use changes. 2nd International Conference on Ecology of Landscape, Isfahan, Isfahan University of Technology (In Persian)
  • Yari M, Soltani Gerdfaramarzi S, Ghasemi Dastgerdi M, and Taghizadeh Mehrjardi R (2017) A study of land use change processes in a part of Qara Saveh Watershed. 8th Scientific Research Conference on Watershed Management and Soil and Water Resources Management, Kerman, Iran Irrigation and Water Engineering Association (In Persian)
  • Ackerman CT, Thomas AE, and Brunner GW (1999) HEC-GeoRas: Linking GIS to hydraulic analysis using ARC/INFO and HEC-RAS. International ESRI User Conference, ESRI, Redlands
  • Evans J P, Smith R B, and Oglesby R J (1998) Middle east climate simulation and dominant precipitation processes. International Journal of Climatology 24:1671–1694
  • Heim R R (2016) A review of twentieth-century drought indices used in United States. Bulletin of the American Meteorological Society, 84:1149-1165
  • Kogan F N (2010) Application of vegetation index and brightness temperature for drought detection. Advances in Space Research 15(11):91-100
  • Liou K N (1999) Radiation and cloud processes in the atmosphere: Theory, Observation, and Modeling. Oxford University Press, 487 pp
  • Lu D, Mausel P, and Brondi´zio E, and Moran E (2004) Change detection techniques. International Journal of Remote Sensing, 25(12):2365-2407
  • Peng J, Zhang H, and Li Z Q (2016) Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations. Advances in Atmospheric Sciences 31:593–603
  • Suriya S and Mudgal B V (2015) Impact of urbanization on flooding: The Thirusoolam sub watershed- a case study. Hydrology Journal, doi 10.1016/j.jhydrol.2011.05.008
  • Teillet P M, Staenz K, and Willams D J (2000) Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions. Remote Sensing of Environment 61:139–149
  • Vardon M (2017) Preparation of the “Glossy” publication on the system of environmental-economic accounting for water. 16th Meeting of the London Group on Environmental Accounting Santiago, 25–28 October
  • Wang X, Yu S, and Huang G H (2012) Land allocation based on integrated GIS-optimization modeling at a watershed level. Landscape Urban Plan 66:61–74
  • Yadav A K (2016) On the relationship between Iran surface temperature and northwest India summer monsoon rainfall. International Journal of Climatology, published online in Wiley online library, doi:10.1002/joc.4648