اولویت‌بندی بازرسی شبکه های جمع‌آوری فاضلاب براساس شاخص‌های سازه‌ای، هیدرولیکی و محیطی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد/ دانشکده مهندسی عمران، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران، ایران.

2 کارشناسی ارشد مهندسی محیط زیست گرایش آب و فاضلاب/ دانشکده مهندسی عمران، پردیس دانشکده‌های فنی دانشگاه تهران، تهران، ایران.

3 دکتری مهندسی محیط زیست، دانشکده مهندسی عمران/ پردیس دانشکده‌های فنی دانشگاه تهران، تهران، ایران.

چکیده

عملکرد مناسب یک شبکه جمع‌آوری فاضلاب وابستگی زیادی به برنامه مدیریت آن دارد. در همین راستا، اولویت‌بندی بازرسی اجزای این شبکه‎ها بخش مهمی از برنامه مدیریت آن است و توجه به آن می‌تواند در بهبود عملکرد آن زیرساخت‌ تأثیر فراوانی داشته باشد. در تحقیق حاضر پس از تعیین عوامل تأثیرگذار در روند زوال سازه‌ای اجزای شبکه جمع‌آوری فاضلاب و تعریف شاخص‌های مربوطه و تعیین نحوه امتیاز‌‌دهی به هر شاخص، شاخص‌ها دسته‌بندی شدند. پس از آن، برای تخمین وضعیت اجزا با استفاده از شاخص‌های سازه‌ای تعریف‌شده و داده‌های ویدئومتری، مدل زوال بر مبنای رگرسیون لجستیک چندجمله‌ای توسعه داده شد. به‌علاوه، شاخص‌های ارزیابی هیدرولیکی و محیطی فاضلابرو‌ها نیز معرفی و دسته‌بندی شدند. در نهایت برای انجام فعالیت‌های بازرسی، شاخص‌های سازه‌ای، هیدرولیکی و محیطی در سناریو‌های مختلف با یکدیگر ترکیب شدند و برنامه اولویت‌بندی انجام شد. با پیاده سازی مدل معرفی شده در این تحقیق بر روی بخشی از شبکه فاضلاب شهر تهران مشخص شد که 2/0 درصد از طول لوله‌ها در شرایط عالی و 3/3 درصد در شرایط خیلی بد بوده و مابقی در شرایطی مابین این دو حالت قرار دارند. طبق نتایج آنالیز حساسیت بر روی ضرایب شاخص‌ها، شاخص سازه‌ای اثرگذارترین شاخص در برنامه اولویت‌بندی منطقه مورد مطالعه تشخیص داده شد و تعیین دقیق این ضریب باید مورد توجه قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Inspection Prioritization of Wastewater Collection Networks Based on Structural, Hydraulic and Environmental Indices

نویسندگان [English]

  • Massoud Tabesh 1
  • Amir Zandieh 2
  • Ahmad Shafiei 2
  • Bardia Roghani 3
1 Professor, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran.
2 M.Sc. Graduated Student, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran.
3 Ph.D. Graduated Student, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran.
چکیده [English]

Proper functioning of a sewage collection network whole depends heavily on its management plan. Prioritizing component inspection of these networks is also an important part of management plan and paying attention to it can greatly improve their performance. In the present study, after determining the factors affecting the structural deterioration process of sewers, the impact of each of these factors on their decision-making and inspection prioritization process is investigated. After defining the indices and determining how each index is scored, each of the indices is classified in the range of 1 (very good) to 5 (very bad). Subsequently, a deterioration model based on polynomial logistic regression was developed to estimate the structural status of components using defined structural indices and videometric data. In addition, hydraulic and environmental assessment indices of sewers were introduced, which classified the condition of sewers in the range of 1 (very good) to 5 (very bad). Finally structural, hydraulic and environmental indices are combined according to different scenarios proposed to prioritize for inspection activities. In the present study, a part of Tehran wastewater collection network was investigated. On average in all defined scenarios, the pipes are in excellent, good, average, bad and very bad condition with 0.2, 6.4, 44.1, 45.9 and 3.3% of the total length of pipes, respectively. According to the results of the sensitivity analysis on the index coefficients, the structural index was identified as the most effective index in the prioritization program and its precise determination should be considered.

کلیدواژه‌ها [English]

  • Collection Network
  • Inspection
  • Prioritization
  • Structural and Hydraulic Indices. Environmental Index
Ana EV, Bauwens W (2010) Modeling the structural deterioration of urban drainage pipes: the state-of-the-art in statistical methods. Urban Water Journal 7(1):47-59
Ana E, Bauwens W, Pessemier M, Thoeye C, Smolders S, Boonen I, De Gueldre G (2009) An investigation of the factors influencing sewer structural deterioration. Urban Water Journal 6(4):303-312
Anbari MJ, Tabesh M, Roozbahani A (2017) Risk assessment model to prioritize sewer pipes inspection in wastewater collection networks. Journal of Environmental Management 190:91-101
Ariaratnam ST, El-Assaly A, Yang Y (2001) Assessment of infrastructure inspection needs using logistic models. Journal of Infrastructure Systems 7(4):160-165‏‏
Ayoub GM, Azar N, Fadel ME, Hamad B (2004) Assessment of hydrogen sulphide corrosion of cementitious sewer pipes: A case study. Urban Water Journal 1(1):39-53
Baah K, Dubey B, Harvey R, McBean E (2015) A risk-based approach to sanitary sewer pipe asset management. Science of the Total Environment 505:1011-1017
Bashash P, Jalili Ghazizadeh, M R, Salehi S, Shurian M (2017) A multi-criteria decision-making model for the rehabilitation of wastewater collection networks. 3rd International Conference on Advances in Civil Engineering, Tehran, Iran
Boslaugh S (2012) Statistics in a nutshell: A desktop quick reference. 2nd Edition, O'REILLY Media, United States of America
Caradot N, Sonnenberg H, Kropp I, Ringe A, Denhez S, Hartmann A, Rouault P (2017) The relevance of sewer deterioration modelling to support asset management strategies. Urban Water Journal 14(10):1007-1015
Cardoso A, Prigiobbe V, Giulianelli M, Baer E, Bénédittis JD, Coelho ST (2006) Assessing the impact of infiltration and exfiltration in sewer systems using performance indicators: Case studies of the APUSS project. Water Practice and Technology 1(1):184-196
Cox DR, Snell EJ (1989) Analysis of binary data. Vol 32 Boca Raton: CRC Press
Chughtai F, Zayed T (2008) Infrastructure condition prediction models for sustainable sewer pipelines. Journal of Performance of Constructed Facilities, American Society of Civil Engineers 22(5):333–341
Davies JP, Clarke BA, Whiter JT, Cunningham RJ (2001) Factors influencing the structural deterioration and collapse of rigid sewer pipes. Urban Water 3(1-2):73-89
Dirksen J, Clemens FH, Korving H, Cherqui F, Le Gauffre P, Ertl T, Plihal H, Müller K, Snaterse CT (2013) The consistency of visual sewer inspection data. Structure and Infrastructure Engineering 9(3):214-28
Duchesne S, Beardsell G, Villeneuve JP, Toumbou B, Bouchard K (2013) A survival analysis model for sewer pipe structural deterioration. Computer‐Aided Civil and Infrastructure Engineering 28(2):146-60
Elsawah H, Guerrero M, and Moselhi O (2014) Decision support model for integrated intervention plans of municipal infrastructure. In ICSI 2014: Creating Infrastructure for a Sustainable World, pp. 1039-1050
EPA (2000) Wastewater technology fact sheet: Pipe construction and materials. United States Environmental Protection Agency, Washington, USA
Halfawy MR, Dridi L, Baker S (2008) Integrated decision support system for optimal renewal planning of sewer networks. Journal of Computing in Civil Engineering 22(6):360-72
Hawari A, Alkadour F, Elmasry M, Zayed T (2016) Simulation-based condition assessment model for sewer pipelines. Journal of Performance of Constructed Facilities 31(1):04016066
InfraGuide (2004) Assessment and evaluation of storm and wastewater collection systems. DMIP Best Practice, National Research Council of Canada, Ottawa, Canada
Islamic Republic of Iran Management and Planning Organization (2005) General technical specification for urban water pipelines and sewage systems- Standard No. 303. Deputy for Technical Affairs, Iran (In Persion)
Islamic Republic of Iran Management and Planning Orgnization (2015) Manual of CCTV operations in sewer networks- Standard No. 677. Department of Technical and Execution Affairs, Ministry of Energy, Iran (In Persion)
Islamic Republic of Iran Planning and Budget Organization Deputy of Technical and InfrastructureDevelopment Affairs (2017) Guidelines for design of wastewater collection systems- Standard No. 118. Deputy of Technical and InfrastructureDevelopment Affairs, Ministry of Energy, Iran (In Persion)
Islamic Republic of Iran Vice Presidency For Strategic Planning and Supervision (2013) Design criteria of urban and rural water supply and distribution systems- Standard No. 117-3. Department of Technical Affairs, Ministry of Energy, Iran (In Persion)
Kessili A, Benmamar S (2016) Prioritizing sewer rehabilitation projects using AHP-PROMETHEE II ranking method. Water Science and Technology 73(2):283-91
Kleiner Y, Sadiq R, and Rajani B (2004) Modeling failure risk in buried pipes using fuzzy Markov deterioration process. In Pipeline Engineering and Construction: What's on the Horizon? (pp. 1-12)
König A (2005) WP2 external corrosion model description, computer aided rehabilitation of sewer networks (Care-S). SINTEF Technology and Society, Trondheim, Norway
Lashkari Zadeh J and Hoseini M (2016) Sewer pipe vulnerability ranking to develop a program for their maintaining and rehabilitation using the SAW method, 9th National Congress of Civil Engineering, Mashhad, Iran
Le Gauffre P, Ibrahim M, Cherqui F (2008) Sewer asset management: fusion of performance indicators into decision criteria. Performance Assessment of Urban Infrastructure Services, Valencia, Spain
McFadden D (1974) The measurement of urban travel demand. Journal of Public Economics 3(4):303-328
Menard S (2002) Applied logistic regression analysis. 2nd Edition, SAGE Publications, London, UK
Pomeroy R (1990) The problem of hydrogen sulphide in sewers. Clay Pipe Development Association, London, UK
Roghani B, Cherqui F, Ahmadi M, Le Gauffre P, Tabesh M (2019) Dealing with uncertainty in sewer condition assessment: Impact on inspection programs. Automation in Construction 103:117-26, https://doi.org/10.1016/j.autcon.2019.03.012
Roghani B (2020) Developing a risk-based multi-criteria decision making model for prioritizing sewer pipes for rehabilitation activities. PhD Thesis, University of Tehran, Tehran, Iran
Rossi II, Carmelo R (2015) Criticality and risk assessment for pipe rehabilitation in the city of Santa Barbara sewer system. Master thesis, California Polytechnic State University, USA
Saaty TL (1980) The analytic hierarchy process. New York: McGraw Hill, Revised editions, Paperback (1996, 2000), Pittsburgh: RWS Publications
Salman B (2010) Infrastructure management and deterioration risk assessment of wastewater collection systems. Doctoral Dissertation, University of Cincinnati
Salman B, Salem O (2011) Risk assessment of wastewater collection lines using failure models and criticality ratings. Journal of Pipeline Systems Engineering and Practice 3(3):68-76
Selvakumar A, Tuccillo ME, Martel KD, Matthews JC, Feeney C (2013) Demonstration and evaluation of state-of-the-art wastewater collection systems condition assessment technologies. Journal of Pipeline Systems Engineering and Practice 5(2):04013018
Tabesh M, Madani S (2006) A performance indicator for wastewater collection systems. Water Practice and Technology 1(4)
Taheri H, Malek Saeedi H, and Jalali M (2019) Factors affecting adoption of water management project for reclamation of lake Urmia by farmers in naghadeh township. Iran-Water Resources Research 15(2):265-277 (In Persian)
Tran D H, Perera B C, and Ng A W M (2009) Comparison of structural deterioration models for stormwater drainage pipes. Computer‐Aided Civil and Infrastructure Engineering 24(2):145-156
Vittinghoff E, McCulloch CE (2007) Relaxing the rule of ten events per variable in logistic and Cox regression. American Journal of Epidemiology 165(6):710-718
Vladeanu G J (2018) Wastewater pipe condition and deterioration modeling for risk-based decision making. Ph.D. Thesis, College of Engineering and Science Louisiana Tech University, USA
Water Research Center (2004) Manual of Sewer Condition Classification (MSCC). 4th Edition, WRc, Wiltshire, England