استخراج مساحت بحرانی و بررسی ارتباط آن با خصوصیات فیزیکی و اقلیمی حوضه‌های آبریز درجه‌ دوم و سوم ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته‌ی کارشناسی مهندسی عمران/دانشکده مهندسی عمران، دانشگاه صنعتی شریف.

2 استادیار/ دانشکده مهندسی عمران، دانشگاه صنعتی شریف.

چکیده

چنانچه نقشه‌ی شبکه‌ی رودخانه‌ی یک منطقه به طور مناسب برای مدل‌سازی فرایندهای انتقال آب یا املاح در اختیار نباشد، این شبکه‌ را می‌باید با استفاده از الگوریتم‌های استخراج شبکه‌ی رودخانه و با تعیین مساحت بحرانی به عنوان پارامتر کلیدی ورودی استخراج کرد. هدف این پژوهش، (1) استخراج مساحت بحرانی در حوضه‌ها‌ی آبریز درجه دوم و سوم ایران و (2) بررسی ارتباط بین آن با ویژگی‌های فیزیکی-اقلیمی حاکم بر حوضه‌ها‌ با هدف تعیین مهمترین عوامل کنترل‌کننده‌ی مساحت بحرانی بوده است. به این منظور، نزدیکترین مساحت بحرانی به واقعیت در هر یک حوضه‌ها‌ی آبریز درجه دوم و سوم ایران با مقایسه‌ی چگالی زهکشی شبکه‌ی رودخانه‌ی استخراج شده به کمک روش D8 و چگالی زهکشی آخرین نسخه‌ی شبکه‌ی رودخانه‌های کشور به عنوان نقشه‌ی مبنا‌ تعیین گردید. طبق نتایج، قدرت تفکیک مکانی مدل رقومی ارتفاعی از 30 متر تا 300 متر تأثیر قابل ملاحظه‌ای در تخمین مقدار مساحت بحرانی ندارد. همچنین، مساحت بحرانی با میزان نفوذ‌پذیری و درجه‌ی فرسایش خاک، رابطه‌ای مستقیم و با تراکم پوشش گیاهی، رابطه‌ای معکوس دارد. مقدار مساحت بحرانی در اقلیم‌های معتدل،‌ بزرگتر و در نواحی گرم‌تر، کوچکتر است. همچنین، افزایش مقدار شیب متوسط حوضه و ارتفاع متوسط بارش سالانه، باعث کاهش مقدار مساحت بحرانی می‌شود. با این وجود، همبستگی بین مساحت بحرانی با تمام کمیت‌های فیزیکی و اقلیمی بررسی شده غیرمعنادار است که این مشاهده حاکی از لزوم استخراج مساحت بحرانیِ حاکم بر یک حوضه‌ی آبریز از روش‌هایی به غیر از روابط فیزیکی-ریاضی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Quantifying Critical Area and Investigating its Relationship with the Physio-Climatic Characteristics of the Second and Third Order River Basins in Iran

نویسندگان [English]

  • Kiarash Ehsani 1
  • Mohammad Danesh Yazdi 2
1 B.Sc. Graduate of Civil Engineering, Department of Civil Engineering, Sharif University, Tehran, Iran.
2 Assistant Professor, Department of Civil Engineering, Sharif University, Tehran, Iran. Department of Civil Engineering, Sharif University of Technology
چکیده [English]

If the channel network map of a region is not suitable for the purpose of modeling water and solute transport processes, the underlying river network should be extracted by the relating algorithms given the critical area as the input. The goal of this study was to (1) extract the critical area in the second and third order river basins in Iran, and (2) investigate the relationship between the critical area and physio-climatic characteristics of the basins with the aim of determining the most dominant factors controlling the critical area. To this end, the closest critical area to reality was determined by minimizing the difference between the drainage density of the extracted river networks using the D8 method and the one known as the base map of the river networks. Results indicate that the spatial resolution of the digital elevation model between 30 m to 200 m does not impose significant impact on the magnitude of the estimated critical area. Also, direct relationship holds between the critical area and the soil permeability and erosion rate, while the correlation is negative between the critical area and the vegetation density. Critical area is smaller and larger in the temperate and warmer climates, respectively. Furthermore, increase in the average slope and the average annual precipitation height decreases the critical area. Nevertheless, the correlation between the critical area and the studied physio-climatic quantities is insignificant, highlighting the need to determine the critical area of a given river basin using approaches other than physical-mathematical relationships.

کلیدواژه‌ها [English]

  • Critical area
  • Drainage density
  • Physio-climatic characteristics
  • River basin
  • River network extraction
Allan JD, Castillo MM (2007) Stream ecology: Structure and function of running waters. Springer, Dordrecht, The Netherlands
Bingner RL, Garbrecht J, Arnold JG, Srinivasan R (1997) Effect of watershed subdivision on simulation runoff and fine sediment yield. Transactions of the ASAE 40(5):1329-35
Clarke A, Mac NallyR, Bond N, Lake P (2008) Macroinvertebrate diversity in headwater streams: A review. Freshwater Biology 53(9):1707–1721
Costa-Cabral MC, Burges SJ (1994) Digital Elevation Model Networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research 30:1681–1692
Czuba, JA, Foufoula-Georgiou E (2015) Dynamic connectivity in a fluvial network for identifying hotspots of geomorphic change. Water Resources Research 51(3):1401-1421
Danesh-Yazdi M, Botter G, Foufoula-Georgiou E (2017) Time-variant Lagrangian transport formulation reduces aggregation bias of water and solute mean travel time in heterogeneous catchments. Geophysical Research Letters 44:4880–4888
Danesh-Yazdi M, Tejedor A, Foufoula-Georgiou E (2017) Self-dissimilar landscapes: Revealing the signature of geologic constraints on landscape dissection via topologic and multi-scale analysis. Geomorphology 295:16-27
Day DG (1983) Drainage density variability and drainage basin outputs. Journal of Hydrology (New Zealand) 22:3–17
Dietrich WE, Wilson CJ, Montgomery DR, McKean J (1993) Analysis of erosion thresholds, Channel networks, and landscape morphology using a digital terrain model. The Journal of Geology 101:259–278
Garbrecht J, Martz LW (1997) The assignment of drainage direction over flat surfaces in raster digital elevation models. Journal of Hydrology 193:204–213
Giannoni F, Roth G, Rudari R (2005) A procedure for drainage network identification from geomorphology and its application to the prediction of the hydrologic response. Advances in Water Resources 28:567–581
Hancock GR, Evans KG (2006) Channel head location and characteristics using digital elevation models. Earth Surf Process Landforms 31:809–824
Helms D (1992) Readings in the history of the Soil Conservation Service. Historical Notes (USA)
Ijjász-Vásquez EJ, Bras RL, Moglen GE (1992) Sensitivity of a basin evolution model to the nature of runoff production and to initial conditions. Water Resources Research 28:2733–2741
Kirkby MJ (1976) Tests of the random network model, and its application to basin hydrology. Earth Surface Processes 1:197–212
Klingebiel AA, Montgomery PH (1961) Land-capability classification. Soil Conservation Service, US Department of Agriculture
Lashermes B, Foufoula-Georgiou E, Dietrich WE (2007) Channel network extraction from high resolution topography using wavelets. Geophys Research Letters 34:n/a-n/a.
Leeder M R (1993) Tectonic controls upon drainage basin development, river channel migration and alluvial architecture: Implications for hydrocarbon reservoir development and characterization, in characterisation of Fluvial and Aeolian Hydrocarbon Reservoirs, edited by C. North and J. Prossor, Geol. Soc. London Spec. Publ., 73:9–24
McMaster KJ (2002) Effects of digital elevation model resolution on derived stream network positions. Water Resources Research 38:13-1-13–8
McNamara JP, Ziegler AD, Wood SH, Vogler JB (2006) Channel head locations with respect to geomorphologic thresholds derived from a digital elevation model: A case study in northern Thailand. Forest Ecology and Management 224:147–156
Ministry of Energy (2011) Classification and coding of river basins and study areas in Iran. (In Persian)
Montgomery DR, Dietrich WE (1988) Where do channels begin?. Nature 336:232–234
Montgomery DR, Foufoula-Georgiou E (1993) Channel network source representation using digital elevation models. Water Resources Research 29:3925–3934
O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing 28:323–344
Passalacqua P, Do Trung T, Foufoula-Georgiou E, Sapiro G, Dietrich WE (2010) A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. Journal of Geophycal Research 115:F01002
Rodríguez-Iturbe I, Rinaldo A (2001) Fractal river basins: chance and self-organization, 1. paperback ed. ed. Cambridge, Cambridge University Press
Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33:309–319
Tarboton DG, Bras RL, Rodriguez-Iturbe I (1991) On the extraction of channel networks from digital elevation data. Hydrological Process 5:81–100
Tejedor A, Longjas A, Zaliapin I, Foufoula-Georgiou E (2015) Delta channel networks: 1. A graph‐theoretic approach for studying connectivity and steady state transport on deltaic surfaces. Water Resources Research 51(6):3998-4018
Tejedor A, Longjas A, Zaliapin I, Foufoula-Georgiou E (2015) Delta channel networks: 2. Metrics of topologic and dynamic complexity for delta comparison, physical inference, and vulnerability assessment. Water Resources Research 51(6):4019-4045
Tucker GE, Bras RL (1998) Hillslope processes, drainage density, and landscape morphology. Water Resources Research 34:2751–2764
Orlandini S, Tarolli P, Moretti G, Dalla Fontana G (2011) On the prediction of channel heads in a complex alpine terrain using gridded elevation data. Water Resources Research 47(2):1–12, https://doi.org/10.1029/2010WR009648
Liu Z, Khan U, Sharma A (2014) A new method for verification of delineated channel networks. Water Resources Research 5(3):2–2
Zanardo S, Zaliapin I, Foufoula-Georgiou E (2013) Are American rivers Tokunaga self-similar? New results on fluvial network topology and its climatic dependence. Journal of Geophysical Research: Earth Surface 118(1):166-183