استفاده از داده‌های رادار دهانه مصنوعی سنتینل-1 به منظور مطالعه اکوسیستم‌های آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار/ گروه محیط زیست دانشکده منابع طبیعی، دانشگاه زابل، زابل، ایران.

2 استادیار/گروه اکوسیستم‌های طبیعی، پژوهشکده تالاب بین‌المللی هامون، دانشگاه زابل، زابل، ایران.

3 استاد/ مرکز تحقیقات سنجش از دور، INRAE ، TETIS، دانشگاه مونپلیه، مونپلیه، فرانسه.

4 دانشیار/ گروه مرتع و ابخیزداری، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران.

چکیده

تالاب ها اکوسیستم های ارزشمندی هستند که خدمات زیادی را برای حفظ حیات ذی نفعان ارائه می دهند. این اکوسیستم ها باید در برابر تخریب های گسترده ناشی از تغییرات انسانی و اقلیمی محافظت بشوند. پایش و احیای این تالاب ها نیازمند اطلاعاتی از همه پارامترهای اکولوژیک آن است. اما فراهم کردن این اطلاعات به دلیل سطح گسترده آنها و پیچیدگی پوشش آن دشوار است. در این مقاله از قابلیت های داده های رادار دهانه مصنوعی برای تهیه نقشه پوشش اراضی تالاب هامون هیرمند در چهار تاریخ شامل سه تصویر در دوره آّبگیری تالاب و یک تصویر در دوره خشک بودن آن استفاده شد. ابتدا میزان پراکنش امواج رادار از پوشش اراضی بررسی شد. سپس، تصاویر بوسیله روش ماشین پشتیبان برداری طبقه بندی شد. نتایج این مقاله نشاندهنده توانایی داده های رادار در تهیه نقشه پوشش گیاهی همراه با آب و طبقات مختلف آن و روند تغییرات این نوع از پوشش اراضی است. همچنین این نتایج نشان داد این تصاویر در مطالعه گیاهان خشک در زمان خشک شدن منابع آب توانمند هستند. نتایج این مقاله در پایش تالاب ها و فراهم کردن داده برای مدیریت و حفاظت اکوسیستم های آبی ارزشمند است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Sentinel-1 Synthetic aperture radar (SAR) Data in Aquatic Ecosystem Study

نویسندگان [English]

  • Saeideh Maleki 1
  • Vahid Rahdari 2
  • Nicolas Baghdadi 3
  • Ahmad Pahlevanravi 4
1 Assistant professor, Department of Natural Resources, University of Zabol, Zabol, Iran.
2 Assistant professor, Hamoun International Wetland Research Institute, University of Zabol, Zabol, Iran
3 Professor, INRAE, TETIS, University of Montpellier, Montpellier, France.
4 Associate professor, Department of water and soil, University of Zabol, Zabol, Iran.
چکیده [English]

Wetlands are valuable ecosystems that provide services to support the life of stakeholders. These ecosystems should be protected against the widespread degradation because of human and climate change. Monitoring and restoration of wetlands need information from all ecological parameters. But providing these information is complicated because of the vast area and complexity of land cover in wetlands. In this paper the Synthetic aperture radar (SAR) data were applied to map the land cover of Hamoun-e-Hirmand in 4 dates include 3 images in flooded period and 1image in dry condition. The radar backscatter of land-cover classes was investigated. Then the Support vector machine classification method was applied to classify the images. The results of this paper show the ability of radar date to map the flooded vegetation classes. Also, it shows the ability of these images to study the dry plants when the water resource dries out. The results of this paper are applicable in monitoring of wetlands and providing the data for ecosystem management and conservation.

کلیدواژه‌ها [English]

  • Wetland
  • Sentinel-1
  • Remote Sensing
  • Synthetic Aperture Radar
  • Hamoun -e- Hirmand
Arnesen AS, Silva TS, Hess L, Novo EM, Rudorff CM, Chapman BD, McDonald KC (2013) Monitoring flood extent in the lower amazon river floodplain using ALOS/PALSAR ScanSAR images. Remote Sensing of Environment 130:51-61
Seifi H, Feizizadeh B (2019) Application of interferometric method and radar remote sensing images to estimate the depth of snow and water discharge, Case study: (Yamchie Basin). Iran-Water Resources Research 15(1):341-355 (In Persian)
Baghdadi N, Bernier M, Gauthier R, Neeson I (2001) Evaluation of C-band SAR data for wetlands mapping. International Journal of Remote Sensing 22:71-88
Bagherzadeh M (2013) Wetland managemnet. Andisheshe Amozegar, Tehran, Iran (In Persian)
Bazzi H, Ienco D, Baghdadi N, Zribi M, Demarez V (2020) Distilling before refine: Spatio-temporal transfer learning for mapping irrigated areas using Sentinel-1 time series. IEEE Geoscience and Remote Sensing Letters 3:1-5
Betbeder J, Rapinel S, Corgne S, Pottier E, Hubert L (2015) TerraSAR-X dual-pol time-series for mapping of wetland vegetation. ISPRS Journal of Photogrammetry and Remote Sensing 107:90-98
Behrouzi-rad B (2009) Waterbird populations during dry and wet years in the Hamoun wetlands complex. Podoces Journal 4(2):88-99
Bourgeau-Chavez L, Kasischke ES, Brunzell SM, Mudd JP, Smith KB, Frick AL (2001) Analysis of space-borne SAR data for wetland mapping in virginia riparian ecosystems. International Journal of Remote Sensing 22:3665-3668
Bousbih S, Zribi M, Pelletier C, Gorrab A, Lili-Chabaane Z, Baghdadi N, ..., Mougenot B (2019) Soil texture estimation using radar and optical data from Sentinel-1 and Sentinel-2. Remote Sensing 11(13):1520
Corcione V, Nunziata F, Mascolo L, Migliaccio M (2016) A study of the use of COSMO-SkyMed SAR PingPong polarimetric mode for rice growth monitoring. International Journal of Remote Sensing 37(3):633–647
Dabrowska-Zielinska K, Budzynska M, Tomaszewska M, Bartold M, Gatkowska M, Malek I., ... Napiorkowska M (2014) Monitoring wetlands ecosystems using ALOS PALSAR (L-Band, HV) supplemented by optical data: A case study of Biebrza Wetlands in Northeast Poland. Remote Sensing 6(2):1605-1633
El Hajj M, Baghdadi N, Belaud G, Zribi M, Cheviron B, Courault D, Charron F (2014) Irrigated grassland monitoring using a time series of terraSAR-X and COSMO-skyMed X-Band SAR data. Remote Sensing 6(10):10002–10032
ESA (2014) Sentinel 1 Datasheet. August 2013. Retrieved 17 August 2014
Furtado LF, Silva TSF, de Moraes Novo EML (2016) Dual-season and full-polarimetricC band SAR assessment for vegetation mapping in the Amazon Várzea Wetlands. RemoteSensing Environment 74:212–222
Gallant A (2015) The challenges of remote monitoring of wetlands. Remote Sensing 7:10938–10950
Grings FM, Ferrazzoli P, Jacobo-Berlles J C, Karszenbaum H, Tiffenberg J, Pratolongo P, Kandus P (2006) Monitoring flood condition in marshes using EM Models and Envisat ASAR observations. IEEE Transactions on Geoscience and Remote Sensing 44:936-942
Guo M, Li J, Sheng C, Xu J, Wu L (2017) A review of wetland remote sensing. Sensors 17(4):777
Hattori A, Mae S (2001) Habitat use and diversity of waterbirds in a coastal lagoon around Lake Biwa,Japan. Ecological research series. U.S. Environmental Protection Agency 16:543-553
Huang C, Peng Y, Lang M, Yeo Y, McCarty G (2014) Wetland inundation mapping and change monitoring using landsat and airborne LiDAR data. Remote Sensing of Environment 141:231-242
Hyde P, Dubayah R, Walker JB, Blair M, Hofton N, Hunsaker C (2006) Mapping forest structure for wildlife habitat analysis. Remote Sensing of Environment 102:63-73
Keshavarz A and Ghasemian H (2006) A fast algorithm for hyperspectral image analysis using SVM and spatial dependency. Iranian Journal of Electrical and Computer Engineering 3(1):308-320 (In Persian)
Klemas V (2013) Using remote sensing to select and monitor wetland restoration sites: An overview. Journal of Coastal Research 29:958-970
Koch M, Schmid T, Reyes M, Gumuzzio J (2012) Evaluating full polarimetric C- and L-band data for mapping wetland conditions in a semi-arid environment in central Spain. Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5:33-44
Maghsoudi Y, Amani R, Ahmadi H (2019) A study of land subsidence in west of Tehran using Sentinel-1 images and permanent scatterers interferometry. Iran-Water Resources Research 15(1):299-313 (In Persian)
Maleki S, Soffianian AR, Koupaei S, Saatchi S, Pourmanafi S, Sheikholeslam F (2016) Habitat mapping as a tool for water birds conservation planning in an arid zone wetland: The case study Hamoun Wetland. Ecological Engineering 95:594-603
Maleki S, Baghdadi N, Soffianian A, El Hajj M, Rahdari V (2020) Analysis of multi-frequency and multi-polarization SAR data for wetland mapping in Hamoun-e-Hirmand wetland. International Journal of Remote Sensing 41(6):2277-2302
Marti-Cardona B, Lopez-Martinez J, Dolz-Ripolles E, Bladè-Castellet H (2010) ASAR polarimetric, multi-incidence angle and multitemporal characterization of Doñana Wetlands for flood Extent Monitoring. Remote Sensing of Environment 114:2802-2815
Morandeira NS, Grings F, Facchinetti C, Kandus P (2016) Mapping plant functional types in floodplain wetlands: An analysis of C-band polarimetric SAR data from RADARSAT-2. Remote Sensing 8:1-17
Mokhtari M, Najafi A (2006) Comparison of support vector machine and neural network classification methods in land use information extraction through Landsat TM data. Journal of Water and Soil Science 19(72):35-45 (In Persian)
Shanani Hoveyzeh SM and Heidar Z (2015) Investigation of land use changes during the past two last decades (Case study: Abolabas Basin). Journal of Watershed Management Research 7:237-234 (In Persian)
Mitsch WJ, Gosselink JG (2007) Wetlands. New York: Wiley 600p
Najafi A, Azizi S, Mokhtari M (2017) Assessment Kernel support vector machines in classification of landuses (Case study: Basin of Cheshmeh kileh-Chalkrod). Journal of Watershed Management Research 8(15):92-101 (In Persian)
Niu J, Zou Y, Yuan X, Zhang B, Wang T (2013) Waterbird distribution patterns and environmentally impacted factors in reclaimed coastal wetlands of the eastern end of Nanhui county, Shanghai, China. Acta Zoologica Academiae Scientiarum Hungaricae 59(2):171-185
O’Grady D, Leblanc M (2014) Radar mapping of broad-scale inundation: Challenges and opportunities in Australia. Stochastic Environment Resource Risk Assessment 28:29-38
Pal M (2005) Random forest classifier for remote sensing classification. International Journal of Remote Sensing 26:217-222
Partow H (2003) Sistan Oasis parched by drought. Atlas of Global Change, Oxford University Press, 144-145
Pelletier C, Valero S, Inglada J, Champion N, Dedieu G (2016) Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment 187:156-168
Rahdari V, Maleki S, Amiri F, Shariff A, Tabatabaie T (2012) Detection of land-use/cover changes over ChahNimeh in Iran using Landsat TM images. Fresenius Environmental Bulletin 21:3825-3835
Ramsar (2016) The list of wetlands of international importance. Ramsar 54 pp
Reschke J, Bartsch A, Schlaffer S, Schepaschenko D (2012) Capability of C-Band SAR for operational wetland monitoring at high latitudes. Remote Sensing 4:2923-2943
Seifi H, Feizizadeh B (2019) Application of interferometric method and radar remote sensing images to estimate the depth of snow and water discharge, Case study: (Yamchie Basin). Iran-Water Resources Research 15(1):341-355 (In Persian)
Shanani Hoveyzeh SM and Heidar Z (2015) Investigation of land use changes during the past two last decades (Case study: Abolabas Basin). Journal of Watershed Management Research 7:237-234 (In Persian)
Schmitt A, Leichtle T, Huber M, Roth A (2012) On the use of dual-co-polarized TerraSAR-X data for wetland monitoring. Remote Sensing and Spatial Information Sciences 7:341-344
Shen G, Liao J, Guo H, Liu J (2015) Poyang Lake wetland vegetation biomass inversion using polarimetric RADARSAT-2 synthetic aperture radar data. Journal of Applied Remote Sensing 9:451-455
Taft OW, Haig SM, Kiilsgaard C (2003) Use of radar remote sensing (RADARSAT) to map winter wetland habitat for shorebirds in an agricultural landscape. Environment Management 33:750-763
Touzi R, Deschamp B, Rother G (2007) Wetland characterization using polarimetric RADARSAT-2 capability. Canadian Journal of Remote Sensing 33(1):56-67
Widis DC, BenDor TK, Deegan M (2015) Prioritizing wetland restoration sites: A review and application to a large- scale coastal restoration program. Ecological Restoration 33:358-377
Wilusz DC, Zaitchik BF, Anderson MC, Hain CR, Yilmaz MT, Mladenova IE (2017) Monthly flooded area classification using low resolution SAR imagery in the Sudd Wetland from 2007 to 2011. Remote Sensing of Environment 194:205-218
WRC, WL (2003) Sistan flood warning and emergency plan. WRC and WL-Delft Hydraulics
Zhang F, Li B, Tian B, Zhou J, Tang P (2016) The backscattering characteristics of wetland vegetation and water-level changes detection using multi-mode SAR: A case study. International Journal of Applied Earth Observation and Geoinformation 45:1-13