ارزیابی تأثیر تغییر اقلیم بر میزان آورد رودخانه ارس (مطالعه موردی: محدوده استان اردبیل)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه کاشان

چکیده

 
وجود تغییر اقلیم و آثاری که بر روی دما، بارش و آورد رودخانه‌ها برجای می‌گذارد، مورد تأئید بسیاری از مطالعات در سراسر جهان بوده است. این تحقیق با هدف ارزیابی اثرات ناشی از تغییر اقلیم بر میزان آورد رودخانه ارس در مقیاس‌های مختلف زمانی انجام پذیرفته است. در این تحقیق برای تحلیل آینده و پیش‌بینی حداقل و حداکثر تغییرات آینده از سناریوهایRCP2.6 ، RCP4.5 و RCP8.5 برای دوره زمانی آینده نزدیک (2017-2036) از مدل HadGEM و مدل ریز مقیاس‌گردانی LARS-WG استفاده شد. به منظور بررسی اثرات تغییر اقلیم بر منابع آب و بررسی مقدار آورد رودخانه ارس در دوره‏های آتی، خروجی‌های سناریوهای اقلیمی به مدل  SWATکه برای دوره پایه واسنجی و صحت­سنجی شده است، وارد شده و نتایج آن مورد بررسی و تحلیل قرار گرفت. برای این منظور از داده‌های ماهانه بارش ایستگاه‌ سینوپتیک پارس‌آباد در طی دوره 2005-1985 به عنوان داده‌های شاهد استفاده شد. جهت ارزیابی و مقایسه دقت داده‌های ریز‌مقیاس شده، مقایسه داده‌های دوره پایه و داده‌های تاریخی تولید شده توسط مدل با استفاده از پارامترهای خطاسنجی انجام شد که به عنوان مثال مقدار شاخص NSE برای بارش، دمای حداقل و دمای حداکثر به ترتیب 695/0، 624/0 و 054/2 به دست آمد. طبق نتایج به دست آمده هر سه سناریو افرایش بارندگی را برای ماه‌های آگوست و دسامبر و کاهش بارندگی را برای ماه‌های آپریل و نوامبر پیش‌بینی نموده‌اند، لیکن به طور کلی مجموع بارش متوسط سالانه در دوره 2017-2036 حوزه آبخیز ارس روند کاهشی خواهد داشت. همچنین هر سه سناریو افزایش دمای حداقل و دمای حداکثر را در تمامی ماه‌ها و فصول سال پیش‌بینی کرده‌اند. نتایج بررسی تأثیر تغییر اقلیم بر آورد رودخانه ارس نیز حاکی از کاهش 7/30، 2/30 و 2/22 درصدی دبی ورودی به رودخانه تحت سناریوهای RCP8.5، RCP4.5 و RCP2.6 می‏باشد. به طور کلی و با توجه به نتایج به دست آمده از مدل‌های استفاده شده، در منطقه مورد مطالعه دما افزایش و بارش کاهش خواهند داشت که بر آورد رودخانه ارس تأثیر منفی خواهد داشت و نیازمند مدیریت صحیح و اصولی بهره‌برداری از منابع آبی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessing the Impact of Climate Change on Aras River Flow (Case Study: Ardabil Province)

نویسندگان [English]

  • Behnam Farid Giglou
  • Reza Ghazavi
  • Siamak Dokhani
Kashan University
چکیده [English]

The purpose of this study was to evaluate the effects of climate change on Aras River catchment discharge at different time scales. In this study, RCP2.6, RCP4.5 and RCP8.5 scenarios for the near future (2017-2036) were used to analyze the future and predict the minimum and maximum future changes of Aras discharge. Climate scenario outputs were entered into SWAT model for calibration and validation period and their results were analyzed. Monthly rainfall data of Pars Abad Synoptic Station during the period of 1985-2005 were used as control period. To evaluate and compare the accuracy of finely scaled data, comparison of baseline data and historical data produced by the model was performed using the calibration parameters. According to the results, all three scenarios predicted an increase in precipitation for August and December and a decrease for April and November, but the average annual precipitation in the Aras watershed during the period 2017-2036 will decrease. All three scenarios also predict an increase in the minimum and maximum temperatures. Although according to SWAT model results, the inlet discharge of Aras River should decrease by 30.7, 30.2, and 22.2% under scenarios RCP8.5, RCP4.5 and RCP2.6 respectively. In general, and based on the results of the models used, the temperature in the study area will increase and precipitation will decrease, which will have a negative impact on the Aras River discharge and will require proper and principled management of water resources utilization.

کلیدواژه‌ها [English]

  • RCP
  • Discharge
  • SWAT model
  • Water resources
Ababayi b, Mirzai F, and Sohrabi d (2012) Performance evaluation of LARS-WG at 12 Iranian coastal meteorological stations. Iranian Water Research Journal 5(9):222-217 (In Persian)
Abbaspour KC (2007) User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. Eawag, Swiss Fed. Institute of Aquatic Science and Technology Du¨bendorf, Switzerland
Abbaspour KC, Faramarzi M, Seyed Ghasemi S, and Yang Y (2009) Assessing the impact of climate change on water resources in Iran. Journal of Water Resources Research 45:1-16
Ahmadi m, Dadashi Rodbari A, Akbari Azirani T, Karami J (2019) Efficiency of HadGEM2-ES model in evaluating seasonal temperature anomalies in Iran under radiation induction scenarios. Earth and Space Physics 45(3):644-625
Akhavan S, Abedi Koopai J, Mousavi F, Islamian S (2009) Estimation of water and green water using SWAT model in Hamedan Bahar catchment. Journal of Agricultural Science and Technology and Natural Resources, Soil and Water Sciences 14(50):9-23
Azari M, Moradi HR, Saghafian B, and Faramarzi M (2016) Climate change impacts on streamflow and sediment yield in the North of Iran. Hydrological Sciences Journal 61(1):123-133
Babaian A and Najafi Nik Z (2007) Introduction and evaluation of LARS-WG model for meteorological parameter modeling, Khorasan Province, statistical period 1961-2003. New Zealand Journal (62):65-49 (In Persian)
Bahri M (2014) Assessing the impacts of climate change and land use on hydrological practices of watersheds (Case study: Eskandari Watershed, Isfahan Province). Master’s Thesis, Yazd University, Iran (In Persian)
Calzadilla A, Zhu T, Rehdanz K, Tol RSJ, and Ringler C (2013) Economywide impacts of climate change on agriculture in Sub-Saharan Africa. Ecological Economics 93:150-165
Chimtengo M, Ngongondo C, Tumbare M, and Monjerezi M (2014) Analysing changes in water availability to assess environmental water requirements in the Rivirivi River basin, Southern Malawi. Physics and Chemistry of the Earth, Parts A/B/C, 67, 202-213
Collins W J,  Bellouin  N,  Doutriaux-Boucher  M,  Gedney  N,  Hinton  T,  Jones  C D, Liddicoat S, Martin G, O’Connor F, Rae J,  and Senior C (2008) Evaluation  of  the  HadGEM2  model,  Hadley  Cent.  Technical  Note, 74
Du X, Li X, Luo T, Matsuur N, Kadokami K, Chen J (2013) Occurrence and aquatic ecological risk assessment of typical organic pollutants in water of Yangtze River estuary, Procedia Environmental Sciences 18:882-889
Fataei E, Azizi A, Seyed Safavian ST, Imani AA, Ojaqi A, Farhadi H (2018) Predicting changes in some climatic variables of Aras valley watershed in the coming decades using change models. Journal of Environmental Geology 11(39):1-12
Gautier E, Dépret T, Costard F et al. (2018) Going with the flow: hydrologic response of middle Lena River (Siberia) to the climate variability and change. Journal of Hydrology 557:475–488
Gosain A, Rao S, and Basuray D (2006) Climate change impact assessment on hydrology of Indian river basins. Current Science 90(3):346–353
Habibnejad R, Shokoohi A (2020) Uncertainty analysis of IDF curves simulation under climate change scenarios using a weather generator model (Case study: Tehran). Journal of Water Resources Research 16(2):164-177 (In Persian)
Hosseini SA (2016) Trends in changes in the quantity and quality of surface water resources and their relationship with land use and drought (Case study: Golgah Watershed, Babol). M.Sc. Watershed Management, Yazd University, 57 pages (In Persian)
Hutchins MG, Abesser CPrudhomme b, CElliott  JA, et al. (2018) Combined impacts of future land-use and climate stressors on water resources and quality in groundwater and surface waterbodies of the upper Thames river basin, UK. Science of the Total Environment 631-632(2018):962–986
Javadi Nejad H, Kavianpour MR, Budaghpour S, Pirooz B (2013) Investigating the effects of pollutant resources (urban, industrial and agricultural) on Aras River Water Quality and Providing Solutions. First National Conference on New Horizons in Empowerment and Sustainable Development of Architecture, Civil Engineering, Tourism and Urban and Rural Environment, 11 p. (In Persian)
Keikha A (2015) The impact of climate change on surface water quality in future periods (Case study of Zarrineh Rood River). M.Sc. Thesis in Water Resources Engineering, University of Tehran, Aboorihan Campus 115 p. (In Persian)
Koutrolis AG, Tsanis IK, Daliakopoulos IN, Jacob D (2013) Impact of climate change on water resources status: A case study for Crete Island, Greece. Journal of Hydrology 479:146-158
Leigh C, Boulton AJ, Courtwright JL, Fritz K, May CL, Walker RH, Datry T (2016) Ecological research and management of intermittent rivers: An historical review and future directions. Freshwater Biology 61(8):1181–1199
Li FP, Zhang GX, and Dong LQ (2013) Studies for impact of climate change on hydrology and water resources. Science Geographical 4:457-464
Lu E, Takle ES, Manoj J (2010) The relationships between climatic and hydrological changes in the upper Mississippi River Basin: A SWAT and Multi-GCM study. American Meteorological Society 11:437-451
Marie Couture R, Jannicke Moe S, Lina Y, Yvind K, et al. (2018) Simulating water quality and ecological status of Lake Vansj, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network. Science of the Total Environment 621(2018):713–724
Mehrotra R, Evans J P, Sharma A, and Sivakumar B (2014) Evaluation of downscaled daily rainfall hindcasts over Sydney, Australia using statistical and dynamical downscaling approaches. Hydrology Research 45(2):226-249
Mishra PK, Prasad S, et al. (2018) Contrasting pattern of hydrological changes during the past twomillennia fromcentral and northern India: regional climate difference or anthropogenic impact? Global and Planetary Change 161:97–107
Mohammadi MF (2015) Assessing the impacts of land use change on the quantity and water quality of Talar River using remote sensing and hydrological modeling M.Sc. Thesis, Sari University of Agriculture and Natural Resources, 104 pages (In Persian)
Morid R, Delavar M, Eagderi S, and Kumar L (2016) Assessment of climate change impacts on river hydrology and habitat suitability of Oxynoemacheilus bergianus, Case study: Kordan River, Iran. Hydrobiologia 771:83–100
Nash J E and Sutcliffe J V (1970) River flow forecasting through conceptual models part I- A discussion of principles. Journal of Hydrology 10(3):282-290
Neitsch SL, Arnold JG, Kiniry JR, Williams JR, and King KW (2005) Soil and water assessment tool-theoretical documentation–version 2005, Texas. Agricultural Research Service 494p.
Neitsch S L, Williams J R, Arnold J G, and Kiniry J R (2011) Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute
Nelson E, Mendoza G, Regetz J, et al. (2009) Modeling multiple ecosystemservices, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment 7(1):4–11
Osman Y, Al-Ansari N, Abdellatif M, Sadeq A, Sven K (2014) Expected future precipitation in central Iraq using LARS-WG stochastic weather generator. Engineering 6:948-959
Pahlavani S, Saeedpour B, Ghasemi A, Rezaei K (2015) Evaluation of Aras River quality based on Hilshenov index. International Conference on New Research in Agricultural Sciences and Environment, 16 p. (In Persian)
Rahimian F (2016) Evaluation of temporal and spatial changes in the water quality of Aras River. M.Sc. Thesis in environmental geology, Urmia University, 107 p. (In Persian)
Rosen J (2017) California rains put spotlight on atmospheric rivers. Science 355(6327):787–788
Saha PP, Zeleke K, and Hafeez M (2013) Streamflow modeling in a fluctuant climate using SWAT: Yass River catchment in south eastern Australia. Environmental Earth Sciences 71(12):5241–5254
Shen M, Chen J, Zhuan M, Chen H, Xu CY, Xiong L (2018) Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. Journal of Hydrology 556:10–24
Vliet MT, Franssen WH, Yearsley JR, Ludwig F, Haddeland I, Lettenmaier DP, Kabat P (2013) Global river discharge and water temperature under climate change. Global Environmental Change 23(2):450–464
Wang H, Xiao W, Wang Y, Zhao Y, et al. (2019) Assessment of the impact of climate change on hydropower potential in the Nanliujiang River basin of China. Energy 167(2019):950e959
Wang R, Kalin L, Kuang W, Tian H (2014) Individual and combined effects of land use/cover and climate change on Wolf Bay watershed streamflow in southern Alabama. Hydrological Process 28(22):5530-5546
Wurbs RA and Muttiah RS (2002) Modeling the impacts of climate change on water supply reliabilities. Water International 27(3):407–419
Xu YP, Zhang X, Ran Q, Tian Y (2013) Impact of climate change on hydrology of upper reaches of Qiantang River Basin, East China. Journal of Hydrology 483:51–60
Yonesi Fard M, Paymazd Sh, Rahimi (2020) Simulation of climate change effect on the runoff of shazand basin applying WetSpa distributional model. Journal of Water Resources Research 16(2):230-242 (In Persian).
Yousefi H, Moridi A, Yazdi J, KhazaiePoul A (2020) Investigating the effect of climate change on discharge, NO3 load, and agricultural products yield upstream of Esteghlal dam. Journal of Water Resources Research 16(2):35-49 (In Persian)
Zhang J, Gao G, Fu B, Zhang L (2018) Explanation of climate and human impacts on sediment discharge change in Darwinian hydrology: Derivation of a differential equation. Journal Hydrology 559:827–834
Zhao CS, Zhang Y, Yang ST (2019) Predicting future river health in a minimally influenced mountainous area under climate change. Science of the Total Environment 656(2019):1373–1385