کاربرد رهیافت تخصیص پارامتر در مدلسازی هیدرولوژیکی حوضه آبخیز با مدل توزیعی-فیزیکی MIKE SHE (مطالعه موردی: حوضه آبخیز زیارت، استان گلستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد علوم و مهندسی آبخیزداری، گروه مهندسی آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.

2 دانشیار، دانشگاه علوم کشاورزی و منابع طبیعی گرگان - دانشکده منابع طبیعی

3 دانشیار دانشگاه علوم کشاورزی و منابع طبیعی گرگان - دانشکده آبخیزداری

چکیده

برآورد پارامتر یکی از مراحل اصلی در مدل‌سازی هیدرولوژیکی است. مقادیر پارامتر می‌تواند به صورت منطقی یا با واسنجی تعیین شود. در مدل‌های توزیعی مبتنی بر فیزیک، می‌توان پارامترها را تا حدودی با استفاده از ویژگی‌های حوضه آبخیز، دانش هیدرولوژیکی، خصوصیت فیزیکی پارامترها و نحوه عملکرد آنها در مدل مشخص نمود. تعیین پارامتر مبتنی بر منطق و شناخت فرآیند، تخصیص پارامتر نامیده می‌شود. این مطالعه تلاش کرده است تا این رویکرد را با مدل MIKE SHE انجام دهد و جریان سطحی در حوضه آبخیز زیارت را با این رویکرد، شبیه‌سازی و نتیجه را با رویکرد واسنجی مقایسه کند. مدل در هر دو رویکرد برای یک دوره مشخص (30/6/1393 – 4/11/1391) و در مرحله اعتبارسنجی برای دوره (30/6/1396- 27/1/1395) اجرا شد. نتایج شبیه‌سازی بر اساس هر کدام از رویکردها با معیارهای کارایی ناش-ساتکلیف و کلینگ-گوپتا مورد ارزیابی قرار گرفت. بر اساس معیارهای مذکور، مدل در رویکرد تخصیص پارامتر دارای کارایی مناسبی بوده و طبق اعتبارسنجی، نتایج منطقی‌تر و با ثبات‌تری از خود نشان داده است. همین نتیجه‌گیری که در رابطه با نتایج بیلان آب حاصل شد بطوریکه مولفه های بیلان آبی در رویکرد تخصیص پارامتر منطقی‌تر و با ثبات‌تر می باشند. بر پایه نتایج این تحقیق می‎توان از رویکرد تخصیص پارامتر در حوضه‎های فاقد آمار استفاده کرد. با صرف زمان بیشتر برای شناخت بهتر حوضه و پارامترهای مدل می‌توان به نتایج قابل‌قبولی دست یافته و نیاز به واسنجی به طور قابل ملاحظه‌ای کاهش می‌یابد، هرچند که در خصوص بعضی پارامترها نمی‌توان از واسنجی اجتناب کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Parameter Allocation Approach in Hydrological Modeling with MIKE SHE Distributed-Physical Model (Case Study: Ziarat Watershed, Golestan Province)

نویسندگان [English]

  • Abolfazl Zarghi 1
  • Abdolreza Bahremand 2
  • Vahedberdi Sheikh 3
1 Graduated from Watershed Management Engineering, Department of Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources
2 Associate Professor, Department of Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources
3 Associate Professor, Department of Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources.
چکیده [English]

Parameter estimation is one of the main tasks in the hydrologic modeling. Parameter values can either be specified logically or blindly calibrated. In distributed physics-based models, it is arguably possible to specify parameters using catchment characteristics, hydrologic knowledge, the physics behind the parameters and how they function in the model. Such logic-based parameter specification is called as parameter allocation. This study tries to practice this modeling approach using the MIKE SHE model and simulate the overland flow in the Ziarat watershed. The model was executed using both approaches for a certain period from 01.23.2013 to 09.21.2014, and for the period from 04.15.2016 to 09.21.2017 as validation. The results of the simulation based on each of the approaches were evaluated by the Nash-Sutcliffe and Kling-Gupta efficiency criteria. Based on these efficiency criteria, the model in the parameter allocation approach has a good performance, and shows consistency in the validation period. Regarding the water balance, the results of the allocation approach are more resoanable and meaningful. Based on this, it can be concluded that spending more time to better understand the watershed charactristics and parameters of the model leads to more acceptable and consistent results that reduces the need for calibration significantly.

کلیدواژه‌ها [English]

  • MIKE SHE
  • Parameter Allocation
  • Kling-Gupta
  • Limited Calibration
Antonetti M, Buss R, Scherrer S, Margreth M, Zappa M (2016) Mapping dominant runoff processes: an evaluation of different approaches using similarity measures and synthetic runoff simulations. Hydrology and Earth System Sciences 20:2929-2945
Antonetti M, Scherrer S, Kienzler PM, Margreth M,  Zappa M (2017) Process-based hydrological modelling: The potential of a bottom-up approach for runoff predictions in ungauged catchments. Hydrological Processes 31(16):2902-2920
Antonetti M, Zappa M (2017) How can expert knowledge increase the realism of conceptual hydrological models? A case study in the Swiss Pre-Alps. Hydrology and Earth System Sciences Discuss 22(8):4425-4447
Bahremand A, Ahmadyousefi S, Sheikh V, Komaki C (2020) A parameter allocation approach for flow simulation utilizing the WetSpa-Python model. Hydrological Processes 35(1)
Bahremand A (2016) Advocating process modeling and de-emphasizing parameter estimation. Hydrology and Earth System Sciences 20(4):1433-1445
Bahremand A (2018) WetSpa model application with and without calibration. In Egu, Pico Hs1:12
Bakhshandeh A, Soltani A, Zinali A, Kalateh Arabi M, Ghadirian R (2011) Evaluation of allometric relationships of leaf area and vegetative traits in wheat and durum wheat cultivars. Journal of Crop Sciences 13(4):657-642 (In Persian)
Bárdossy A (2007) Calibration of hydrological model parameters for ungauged catchments. Hydrology and Earth System Sciences 11(2):703-710
Bergstrom S (2006) Applications of the HBV hydrological model in prediction in ungauged basins. in: Large Sample Basin Experiments for Hydrological Model Parameterization: Results of the Model Parameter Experiment-MOPEX, IAHS Publication 307:97– 107
Blöschl G, Reszler C, Komma J (2008) A spatially distributed flash flood forecasting model. Environmental Modelling and Software 23:464–478
Christian RJ, Storm B, Clausen, T (2010) Système Hydrologique Europeén (SHE): Review and perspectives after 30 years development in distributed physically-based hydrological modelling. Hydrology Research 41(5):355-377
Cowan, WL (1956) Estimating hydraulic roughness coefficients. Agricultural Engineering 37(7):473-475
Daneshkarasteh P, Sotoudehnia S, Sotoudehnia A, Kaviani A (2016) Estimation of dry matter using leaf area index. Journal of Water Management and Irrigation 1:13-1 (In Persian)
DHI: MIKE SHE Technical Reference, Version 2014 (2014) DHI water and environment. Danish Hydraulic Institute, Denmark
DHI, MIKE SHE User’s Manual, Volume 1 and 2 (2014) An integrated hydrological modelling framework. 697p
Engman T (1986) Roughness coefficients for routing surface runoff. Journal of Irrigation and Drainage Engineering 112(1):39-53
Etesami M, Galeshi S, Soltani A, Nourinia A (2009) Study of yield and leaf area index of 10 barley genotypes and comparison with logistic and exponential growth curves. Journal of Plant Ecophysiology 1(2):80-68 (In Persian)
FAO-56 (2005) Dual crop coefficient method for estimating evaporation from soil and application extensions‏.
Feiznia S (2008) Applied sedimentology with emphasis on soil erosion and sediment production. Gorgan University of Agricultural Sciences and Natural Resources Publications, 356p (In Persian)
Gharari S, Hrachowitz M, Fenicia F, Gao H, and Savenije H H G (2014) Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. Hydrology and Earth System Sciences 18(12):4839-4859
Ghonchepoor D, Bahremand A (2018) Runoff simulation in an arid catchment by KINEROS2 hydrological model through parameter allocation approach. Innovative Research Methods in Hydrology. Vinograndov Conference, Russia 3:277-282
Gupta HV, Kling H, Yilmaz K K, Martinez G F (2009) Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology 377(1):80–91
Gupta HV, Nearing GS (2014) Debates-The future of hydrological sciences: A (common) path forward? Using models and data to learn: A Systems theoretic perspective on the future of hydrological science. Water Resource Research 50(6):5351–5359
He ZH, Tian FQ, Gupta HV, Hu HC, Hu HP (2015) Diagnostic calibration of a hydrological model in a mountain area by hydrograph partitioning. Hydrology and Earth System Sciences 19(4):1807-1826
Hingray B, Schaefli B, Mezghani A, Hamdi Y (2010) Signaturebased model calibration for hydrological prediction in mesoscale Alpine catchments. Hydrology Sciences Journal 55(6):1002­-1016
Hrachowitz M, Fovet O, Ruiz L, Euser T, Gharari S, Nijzink R, Freer J, Savenije H H G, Gascuel-Odoux C (2014) Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resource Research 50(9):7445–7469
Hu C, Guo S, Xiong L, Peng D (2005) A modified Xinanjiang model and its application in Northern China. Hydrology Research 36(2):175–192
Iran Ministry of Energy (2016) Guideline for determination of the hydraulic roughness coefficient of rivers. Bulletin No 688:106p (In Persian)
Kalin L, Isik S, Schoonover JE, Lockaby B G (2010) Predicting water quality in unmonitored watersheds using artificial neural networks. Journal of Environmental Quality 39(4):1429–1440
Lebedeva L, Semenova O, Vinogradova T (2014) Simulation of active layer dynamics, upper Kolyma, Russia, using the Hydrograph hydrological model. Permafrost Periglac 25(4):270– 280
Li D, Liang Zh, Li B, Lei X, Zhou Y (2018) Moving beyond run-off calibration-multivariable optimization of a surface -subsurface-atmosphere model. Hydrological Processes 32(17):2654-2668
Li B, Yu Z, Liang Z, Acharya K (2014) Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau. Global Planet Change 118:69–84
Liyang Z, Tang T, Li B, Liu T, Wang J, Hu Y (2017) Long-term streamflow forecasting using SWAT through the integration of the random forest precipitation generator: case study of Danjiangkou Reservoir. Hydrology Research 49(5):1513–1527
Majnooni HA, Nazemi A, SadroDini A, Neyshabouri M, Shakiba M (2015) Determination of evapotranspiration, plant coefficient and growth stages of rapeseed using lysimetric data. Journal of Soil and Water Knowledge 25(5):153-163
Moriasi D N, Arnold J G, Van Liew M W, Bingner R L, Harmel R D, Veith T L (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900
Najarchi M (2005) Estimation of barley crop coefficient in Arak city. In: The Second National Conference on Watershed Management and Soil and Water Resources Management, Kerman, Iran (In Persian)
Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual model. Journal of Hydrology 10:282–290
Oogathoo Sh (2006) Runoff simulation in the Canagagigue Creek watershed using the MIKE SHE Model. M.Sc. Thesis, Dept Bioresource Engineering, McGill University, Montreal, Canada
Osareh A, Tavakolizadeh A (2006) Hydrological simulation system. Islamic Azad University of Ahvaz Publications, First Edition, 260pp (In Persian)
Ozhan M, Bahremand A, Sheykh V, Komaki CH (2018) Prediction of Floods extent with different return periods using 2-D hydraulic model, LISFLOOD-FP. Iran-Water Resources Research 13(4):190-195 (In Persian)
Panahi P, Pourhashem M, Hassani Nejad M (2013) Comparison of leaf area of three species of Zagros native oak in the National Botanical Garden of Iran. Journal of Forest Ecology 1(2):58-47 (In Persian)
Refahi H (2003) Water erosion and its control. University of Tehran Press, 671p (In Persian)
Refsgaard J (1997) Parameterization, calibration and validation of distributed hydrologic models. Journal of Hydrology 198(1-4):69–97
Rostamian R (2006) Estimation of runoff and sediment in Behesht Abad basin in North Karun using SWAT2000 model M.Sc. Thesis, Faculty of Irrigation and Drainage, Isfahan University of Technology, 192p (In Persian)
Schaefli B, Huss M (2011) Integrating point glacier mass balance observations into hydrologic model identification. Hydrology and Earth System Sciences 15(4):1227–1241
Sharifi F, Bozorg Haddad A, Ali Mohammadi S (2005) Flow prediction using artificial neural networks. Fifth Iranian Hydraulic Conference, Shahid Bahonar Collage of Engineering, Kerman (In Persian)
Shabanloo S, Hamrang MR (2011) Comparison of flood hydrographs estimated by integrated and distributed models (Case study of Karun watershed). Second National Conference on Applied Research in Water Resources of Iran, Zanjan Regional Water Company, Zanjan, Iran (In Persian)
 
Tajmalian M, Irannejadpayezi M, Malekinejad H, Rad M, Sodaeizadeh H (2013) Determining water requirement, plant coefficient and water use efficiency in Qalam rangeland plant (BOIS.FORTUYNIA BUNGEI). Iranian Range and Desert Research 4:96-105 (In Persian)
Tesemma K, Yongping W, Andrew W, Murray P (2014) Leaf area index variation for crop, pasture, and tree in response to climatic variation in the Goulburn–Broken catchment, Australia. Journal of Hydrometeorology 15(4):1592-1606
Thompson JR (2012) Modelling the impacts of climate change on upland catchments in southwest Scotland using MIKE SHE and the UKCP09 probabilistic projections. Hydrology Research 43(4):507–530
Usmanov S, Mitani Y, Kusuda T (2016) An integrated hydrological model for water balance estimation in the Chirchik river basin, Northern Uzbekistan. Computational Water, Energy, and Environmental Engineering 5(3):87-97
Vázquez RF, Feyen L, Feyen J, Refsgaard JC (2002) Effect of grid size on effective parameters and model performance of the MIKE-SHE code. Hydrology Process 16(2):355–372
Vidal JP, Moisan S, Faure JB, Dartus D (2007) River model calibration, from guidelines to operational support tools. Environment Modelling and Software 22(11):1628–1640
Yan J, Smith K (1994) Simulation of integrated surface water and ground water systems-Model formulation. Journal of the American Water Resources Association 30(5):1–12
Zarei A, Amiri M, Zahrabi S, Bumeh F (2013) Determination of Crop Coefficient (KC) in Species (MEDICAGO POLYMORPHA) using weight microLysimeter. Iranian Range Magazine 10(2):52-65 (In Persian)
Zhang J, Zheng Z, Guo B (2017) Sensitivity and uncertainty-based evaluation and simulation of MIKE SHE Model in Guishui River Basin, Beijing, China. International Journal of Water 11(2):103-114