کاربست رویکرد شاخص‌محور در ارزیابی امنیت آبی حوضه دریاچه ارومیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، دانشگاه ارومیه.

2 استاد گروه مهندسی آب دانشگاه ارومیه.

3 دانشیار گروه مهندسی و مدیریت آب دانشگاه تربیت مدرس.

چکیده

با رشد تقاضا برای غذا و انرژی، افزایش استانداردهای زندگی و پیچیدگی‌های حکمرانی آب، فشار بر منابع آب در حال افزایش است. عوامل متعددی در ایجاد امنیت آبی دخیل هستند. در این پژوهش، ابتدا امنیت آبی حوضه‌ دریاچه ارومیه با استفاده از طبقه‌بندی آبی- اقتصادی حوضه برای 1) دوره‌های پنج ساله از سال 1370 تا 1395 و 2) استان‌های واقع در حوضه‌ برای سال پایه 1395 مورد بررسی قرار گرفت. نتایج بدست آمده، وجود چالش‌های هیدرولوژیکی زیاد و ظرفیت اقتصادی کم برای دستیابی به امنیت آبی را نشان داد. روش‌های عمومی نظیر طبقه‌بندی آبی- اقتصادی، اطلاعات دقیقی از وضعیت سیستم منابع آب در مقیاس‌های محلی ارائه نمی‌کنند. لذا در بخش دوم، باتوجه به ویژگی‌های حوضه، تعریف مشخصی از امنیت آبی ارائه شد. باتوجه به این تعریف، یک چارچوب شاخص‌محور در سه بعد دسترسی به آب، درآمد ساکنین و اشتغال ساکنین برای ارزیابی امنیت آبی حوضه طراحی شد و بررسی‌ها برای دوره تاریخی انجام گرفت. باتوجه به معیارهای درنظر گرفته شده، به طور کلی امنیت آبی حوضه در سال‌های 1375 و 1395 « کم» و در سال‌های 1380، 1385، 1390 «متوسط» ارزیابی شد. بررسی امنیت آبی حوضه با شاخص‌های بهره‌وری فعالیت‌های اقتصادی نشان داد که به منظور دستیابی به امنیت آبی در آینده، بخش کشاورزی از پتانسیل لازم برای توسعه اجتماعی- اقتصادی برخوردار نبوده، سیاست‌ها باید در راستای کاهش مصرف آب و اشتغال کشاورزی ارائه شود. این امر بدون سرمایه‌گذاری و ایجاد ظرفیت اشتغال در بخش‌های دیگر که قابلیت بالایی برای افزایش درآمد سرانه حوضه را دارند، ممکن نیست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Indicator-Based Approach in Water Security Assessment of Lake Urmia Basin

نویسندگان [English]

  • Samin Jabbari Gharabagh 1
  • Hossein Rezaie 2
  • Ali Bagheri 3
1 Ph.D. Candidate of Water Resources Engineering, Urmia University.
2 Professor, Department of Water Engineering, Urmia University.
3 Associate Professor, Department of Water Engineering and Management, Tarbiat Modarres University.
چکیده [English]

By growing food and energy demands and rising living standards and according to the complexity of regional water governance, the pressure on water resources is increasing. Many factors are involved in water security. In this research, firstly, the water security of Lake Urmia Basin was investigated using hydro-economic classification for 1) five-year periods from 1991 to 2016, and 2) the provinces located in the basin for 2016. The results showed the existence of high hydrological challenges and low economic capacity to achieve water security. Since general methods such as hydro-economic classification do not provide accurate information at local scales, in the second part, a clear definition of water security was presented according to the characteristics of Lake Urmia Basin. Considering this definition, we designed an indicator-based framework in three dimensions of access to water, income, and employment to assess the water security of the basin. The study was conducted for the historical period. By the considered criteria, the water security of the basin was assessed as "low" in 1996 and 2016 and "moderate" in 2001, 2006 and 2011. The study of the basin water security with productivity indicators of economic activities showed that in order to achieve water security in the future, the agricultural sector does not possess the necessary potential for socio-economic development and policies in this sector should be oriented towards reduction of water consumption and employment. This is not possible without investing and creating employment capacity in other sectors, which have high potential for increasing employment opportunities and per capita income.

کلیدواژه‌ها [English]

  • Hydro-economic Classification
  • Hydrological Challenges
  • Economic Capacity
  • Productivity
  • Employment
Al-Otaibi A and Abdel-Jawad M (2007) Water security for Kuwait. Desalination, 214(1–3):299–305
Ansari Mahabadi S, Massah Bavan A, and Bagheri A (2019) Evaluation of adaptation strategies to climate change based on social, economic and environmental resilience indicators. Iran-Water Recources Research 14(5):237-253 (In Persian)
Arnell NW (2004) Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environmental Change 14(1):31–52
Babel MS, Shinde VR, Sharma D, and Dang NM (2020) Measuring water security: A vital step for climate change adaptation. Environmental Research 185:109400
Bagheri A and Babaeian F (2020) Assessing water security of Rafsanjan Plain, Iran: Adopting the SEEA framework of water accounting. Ecological Indicators 111:105959
Burek P, Satoh Y, Fischer G, Kahil MT, Scherzer A, Tramberend S, Nava LF, Wada Y, Eisner S, Flörke M, and others (2016) Water futures and solution-fast track initiative. Final Report, Laxenburg, Austria: International Institute for Applied Systems Analysis (IIASA). 115p. IIASA, WP 16-006
Chen Z and Wei S (2014) Application of system dynamics to water security research. Water Resources Management 28(2):287–300
Dickson SE, Schuster-Wallace CJ, and Newton JJ (2016) Water security assessment indicators: The rural context. Water Resources Management 30(5):1567–1604
Eekhout JPC, Hunink JE, Terink W, and de Vente J (2018) Why increased extreme precipitation under climate change negatively affects water security. Hydrology and Earth System Sciences. Copernicus GmbH 22(11):5935–5946
ESRI (1996) ArcView GIS: The geographic information system for everyone. Environmental Systems Research Institute
Fischer G, Hizsnyik E, Tramberend S, and Wiberg D (2015) Towards indicators for water security- A global hydro-economic classification of water challenges. Interim Report, Laxenburg, Austria:  International Institute for Applied Systems Analysis (IIASA). 24p. IIASA, IR-15-1013
Grey D and Sadoff CW (2007) Sink or swim? Water security for growth and development. Water Policy 9(6):545–571
GWP (2000) Towards water security: Framework for Action. Global Water Partnership 10
Intergovernmental Council of the IHP (2012) (Draft) Strategic plan of the eighth phase of IHP (IHP-VIII, 2014-2021). Paris, France
Iran Ministry of Energy (2018) Iran water statistical yearbook (2014-2015).
JAMAB Consulting Engineers (2005) Climate adaptation program studies, existing and future state of water resources in Urmia Lake basin. Current and future status of water resources in Lake Urmia basin, first volume, 43p.
Jia X, Li C, Cai Y, Wang X, and Sun L (2015) An improved method for integrated water security assessment in the Yellow River basin, China. Stochastic Environmental Research and Risk Assessment 29(8):2213–2227
Jiang Y (2015) China’s water security: Current status, emerging challenges and future prospects. Environmental Science & Policy 54:106–125
Lautze J and Manthrithilake H (2012) Water security: Old concepts, new package, what value? Natural Resources Forum, Wiley Online Library 36(2):76–87
Nie R, Tian Z, Wang J, Zhang H, and Wang T (2018) Water security sustainability evaluation: Applying a multistage decision support framework in industrial region. Journal of Cleaner Production 196:1681–1704
Notter B, Hurni H, Wiesmann UM, and Abbaspour KC (2012) Modelling water provision as an ecosystem service in a large East African river basin. Hydrology and Earth System Sciences 16(1):69–86
Saif O, Mezher T, and Arafat HA (2014) Water security in the GCC countries: Challenges and opportunities. Journal of Environmental Studies and Sciences 4(4):329–346
Satoh Y, Kahil T, Byers E, Burek P, Fischer G, Tramberend S, Greve P, Flörke M, Eisner S, and Hanasaki N (2017) Multi-model and multi-scenario assessments of Asian water futures: The Water Futures and Solutions (WFaS) Initiative, Earth’s Future 5(7):823–852
Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water International 25(1):11–32
Statistical Center of Iran (2020) Statistical Center of Iran Database.
Strazzabosco A (2020) Asian water development outlook 2020: Advancing water security across Asia and the Pacific. Asian Development Bank, Philippines, 156p.
Taylor KS (2021) Australian water security framings across administrative levels. Water Security, Elsevier 12:100083
Tramberend S, Wiberg D, Wada Y, Flörke M, Fischer G, Satoh Y, Yillia P, van Vliet M, Hizsnyik E, Nava LF and others (2015) Building global water use scenarios. Interim Report, Laxenburg, Austria: International Institute for Applied Systems Analysis (IIASA). 55p. IIASA, IR-15-014
Wada Y, Gain AK, and Giupponi C (2016) Measuring global water security towards sustainable development goals. Environmental Research Letters 11(12):2–13
Wang X, Chen Y, Li Z, Fang G, and Wang Y (2020) Development and utilization of water resources and assessment of water security in Central Asia. Agricultural Water Management, Elsevier 240:106297
Water UN (2019) Step-by-step methodology for monitoring water use efficiency (6.4.1).
Xiao-jun W, Jian-yun Z, Shahid S, Xing-hui X, Rui-min H, and Man-ting S (2014) Catastrophe theory to assess water security and adaptation strategy in the context of environmental change. Mitigation and Adaptation Strategies for Global Change 19(4):463–477
Yao M, Tramberend S, Kabat P, Hutjes RWA, and Werners SE (2017) Building regional water-use scenarios consistent with global shared socioeconomic pathways. Environmental Processes 4(1):15–31