ارزیابی کیفی شبکه جمع‌آوری آب‌های سطحی در شرایط خشک و تر، مطالعه موردی: حوضه غرب تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی عمران- مدیریت منابع آب، دانشکده مهندسی عمران، آب و محیطزیست، دانشگاه شهید بهشتی، تهران، ایران.

2 کارشناس منابع آب، شرکت مهندسی مهاب قدس، تهران، ایران.

3 دکتری مهندسی و مدیریت منابع آب، دانشکده مهندسی عمران، پردیس دانشکده‌های فنی، دانشگاه تهران، ایران.

4 دانشجوی کارشناسی ارشد، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران.

چکیده

یکی از مسائل مهم در مدیریت سیستم‌های جمع‌آوری فاضلاب‌ شهری، نحوه مواجهه با شرایط بارانی است که در آن حجم فاضلاب در بازه‌های خاص زمانی به طور یکباره افزایش یافته و دبی شبکه از حالت نرمال خارج می‌شود. بروز این شرایط می‌تواند باعث وارد آمدن خسارت به شبکه، کاهش عملکرد آن و تخلیه فاضلاب به معابر و ساختمان‌ها گردد. در بسیاری از شبکه‌های جمع‌آوری فاضلاب شهری در جهان، در چنین شرایطی، تخلیه فاضلاب به مجاری اصلی آب‌های سطحی انجام می‌شود و کیفیت آن‌ها را به طور قابل ملاحظه‌ای کاهش می‌دهد. در این مطالعه، به مدلسازی کیفی آب‌های سطحی در شرایط پایه و بارانی در حوضه غرب تهران پرداخته شده است. جهت شبیه‌سازی کیفی آبراهه‌ها، از نرم‌افزار SWMM استفاده شد. مدلسازی کیفی برای متغیرهای کیفی BOD، TDS و TC و برای دو سناریو جریان مواقع بارانی و غیربارانی انجام گردید. با توجه به بحرانی بودن شرایط DO در شرایط غیر بارانی و خشک، حداکثر بار مجاز قابل تخلیه به شبکه جمع آوری آب سطحی به گونه‌ای تعیین گردید تا میزان DO در سطح استاندارد باقی بماند و منجر به شرایط بی‌هوازی و تولید بوی نامطبوع نشود. نتایج نشان داد در شرایط بارانی TDS و BOD به مقدار قابل توجهی افزایش یافته و از استاندارد کشاورزی عدول می‌کند. همچنین نتیجه گرفته شد با کاهش BOD تا 50 میلی‌گرم در لیتر می‌توان وضعیت DO را بهبود بخشید تا شرایط بی‌هوازی ایجاد نشود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessing the Quality of Surface Water Collection Network in Wet and Dry Conditions, Case Study: West Watershed of Tehran

نویسندگان [English]

  • Ali Moridi 1
  • Mohammad Reza Bagheri 2
  • Amin Zeynolabedin 3
  • Arash Nabi 4
1 Assistant Professor, Department of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
2 Water Resources Engineer, Mahab Ghodss Consulting Engineering Company, Tehran, Iran.
3 Ph.D. in water resources engineering and management, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran.
4 M.Sc. Student in Water and Environmental Engineering, Department of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
چکیده [English]

One of the important issues in the management of municipal wastewater collection systems is how they deal with rainy conditions where the network discharge suddenly increases at certain intervals. The occurrence of such condition can cause damage to the network, reduce its performance and discharge sewage to the subsurface. In many urban wastewater collection networks sewage would be discharged to the main urban stormwater canals to overcome the situation which significantly reduce the quality of flow in those canals. In this study, the quality in stormwater collection network is modeled in the west watershed of Tehran in dry and rainy conditions. The SWMM software is used to simulate the quality of waterways. Qualitative modeling is performed for BOD, TDS, and TC variables for two scenarios of rainy and dry conditions. Due to the critical condition of DO in dry conditions, the maximum allowable load discharged to the urban stormwater collection network is determined so that the DO level remains at the standard level. This is important to prevent anaerobic condition which causes unpleasant odors. The results showed that in rainy conditions, TDS and BOD increased significantly and over the irrigation water standards. This is critical since the output of storm water network is being used for irrigation in the south western plains. It was also concluded that by reducing BOD to 50 mg/L, the DO status can be improved to avoid anaerobic conditions.

کلیدواژه‌ها [English]

  • Surface water quality modeling
  • SWMM
  • dry and wet conditions
  • maximum allowable discharge load
  • water quality variables
Abbasi H, Zeynolabedin A, Nabi Bidhendi G (2021) Assessment of combined sewer overflows impacts under flooding in coastal cities. Journal of Water and Climate Change 12(6):2460–2478
Ao S, Zayed T (2021) Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. Environmental Research 111609
Arjenaki MO, Sanayei HRZ, Heidarzadeh H, Mahabadi NA (2021) Modeling and investigating the effect of the LID methods on collection network of urban runoff using the SWMM model (Case study: Shahrekord City). Modeling Earth Systems and Environment 7(1):1-16
Costa C, Miller P, Pace D (2015) Eliminating combined sewer overflow in the Blackstone Canal. B.Sc. Report, Faculty of Worcester Polytechnic Institute
Dell T, Razzaghmanesh M, Sharvelle S, Arabi M (2021) Development and application of a SWMM-based simulation model for municipal scale hydrologic assessments. Water 13(12):1644
EPA (2016) Report to congress combined sewer overflows into the Great Lakes Basin. U.S. Environmental Protection Agency (EPA), Office of Wastewater Management
Even S, Mouchel JM, Servais P, Flipo N, Poulin M, Blanc S, ..., Paffoni C (2007) Modelling the impacts of combined sewer overflows on the river Seine water quality. Science of the Total Environment 375(1-3):140-151
Gandhi R, Ray AK, Sharma VK, Nakhla G (2014) Treatment of combined sewer overflows using ferrate. Water Environment Research 86(11):2202-2211
Ghodsi, SH, Zhu Z, Gheith H, Rabideau AJ, Torres MN, Meindl K (2021) Modeling the effectiveness of rain barrels, cisterns, and downspout disconnections for reducing combined sewer overflows in a city-scale watershed. Water Resources Management 35:2895–2908
Hashemi M, Mahjourimajd N (2019) Sensitivity analysis of surface runoff simulation parameters in Velenjak sub-basin of the Tehran city: Application of VARS, Sobol and Morris Methods. Iran-Water Resources Research 14(4):71-79 (In Persian)
Huber WC (1985) Storm Water Management Model (SWMM) bibliography Athens. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency
IWRMC (Iran Water Resources Management Company) (2020) Meteorological data. Retrieved from https://www.wrm.ir
Karami M, Ardeshir A, Behzadian K (2016) Hazard management of inundation and pollutants in urban floods using optimal conventional and novel strategies. Iran-Water Resources Research 11(3):100-112 (In Persian)
Kenward A. Yawitz D. Raja U. 2013 Sewage Overflows from Hurricane Sandy. Climate Central, Princeton, NJ.
Khaleghi Sigaroodi S, Rostami Khalaj M, Mahdavi M, Salajegheh A (2015) Calibration and evaluation of SWMM model for urban runoff simulation (Case study: Imam Ali town of Mashhad). Iranian Journal of Natural Resources 68(2):487-498 (In Persian)
Locatelli L, Russo B, Acero Oliete A, Sánchez Catalán JC, Martínez-Gomariz E, Martínez M (2020) Modeling of E. coli distribution for hazard assessment of bathing waters affected by combined sewer overflows. Natural Hazards and Earth System Sciences 20(5):1219-1232
Mahab Ghodss Consulting Engineering Company (2011) Tehran surface water master plan. Technical Report (In Persian)
Morales VM, Mier JM, Garcia MH (2017) Innovative modeling framework for combined sewer overflows prediction. Urban Water Journal 14(1):97-111
Pachaly RL, Vasconcelos JG, Allasia DG (2021) Surge predictions in a large stormwater tunnel system using SWMM. Urban Water Journal 18(8):1-8
Pulgarín DA, De Plaza JS, Ruge JC, Rojas JP (2021) Hydraulic modeling of combined sewers overflow integrating the results of the SWMM and CFX models. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 37(1):14
Saharia AM, Zhu Z, Aich N, Baalousha M, Atkinson JF (2019) Modeling the transport of titanium dioxide nanomaterials from combined sewer overflows in an urban river. Science of the Total Environment 696:133904
Saniei K, Yazdi J, MajdzadehTabatabei MR (2021) Optimal size, type and location of Low Impact Developments (LIDs) for urban stormwater control. Urban Water Journal 18(8):1-13
Scherer G (2007) Low Impact Development (LID) as a solution to the CSO problem in the NY-NJ harbor estuary. NY/NJ BAYKEEPER, NJ 07735
Shokouhimehr E, Yazdi J, Salehi Neyshabouri SA (2021) Coordinated operation of urban storm detention ponds with optimal control of gates using harmony search algorithm (Case Study: Drainage network in east watershed of Tehran). Iran-Water Resources Research 17(1):181-194 (In Persian)
Sinha S, Liu X, Garcia MH (2012) Three-dimensional hydrodynamic modeling of the Chicago River, Illinois. Environmental Fluid Mechanics 12(5):471-494
Statistical center of Iran (2016) Population data. Retrieved from https://www.amar.org.ir
Yazdi J, Neyshabouri SS (2014) Identifying low impact development strategies for flood mitigation using a fuzzy-probabilistic approach. Environmental Modelling & Software 60:31-44
Zare Farjoudi S, Moridi A, Mousavi Nadoushani SS (2019) Applying bankruptcy approach in allocating point and non-point pollution in rivers. Iran-Water Resources Research 15(2):88-97 (In Persian)
Zeng Z, Yuan X, Liang J, Li Y (2021) Designing and implementing an SWMM-based web service framework to provide decision support for real-time urban stormwater management. Environmental Modelling & Software 135:104887