تدوین مدل تخصیص بهینه منابع آب زیرزمینی با لحاظ تعاملات ذی‌نفعان: کاربرد مدل های چانه زنی بازگشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته‌ی کارشناسی ارشد مهندسی عمران / دانشگاه شیراز

2 استادیار /بخش مهندسی عمران و محیط‌زیست، دانشکده‌ مهندسی، دانشگاه شیراز

3 استاد /بخش مهندسی عمران و محیط‌زیست، دانشکده‌ مهندسی، دانشگاه شیراز

چکیده

در دهه ‌های اخیر استفاده از مدل‌ های رفع اختلاف در زمینه مدیریت منابع آب از جمله آب‌ های زیرزمینی به عنوان راه حلی مناسب برای لحاظ تضاد‌ها و تعاملات بین ذی‌نفعان درگیر و در نتیجه رسیدن به راه‌حل‌های بهینه قابل اجرا، رواج چشمگیری داشته ‌است. در این تحقیق، با استفاده از تلفیق مدل‌های شبیه‌ ساز‌-‌بهینه‌ سازی بهره‌ برداری از منابع آب زیرزمینی و مدل‌های چانه‌زنی بازگشتی، ضمن توجه به مطلوبیت‌ های طرف‌های درگیر و معیارهای اجتماعی از جمله عدالت، بهترین سیاست‌های تخصیص تعیین شده است. برای تعیین منحنی تعامل بین اهداف متضاد، مدل بهینه‌ ساز چند‌هدفه NSGA-II با فرامدل شبیه‌ساز M5P که با سری اطلاعات ورودی-خروجی حاصله از اجرای مکرر مدل MODFLOW آموزش و صحت‌سنجی شده، تلفیق گردید. از روش مونت کارلو برای تولید پایگاه داده جهت آموزش و صحت‌سنجی فرامدل‌ به ازای مقادیر مختلف پمپاژ استفاده شد. به دلیل ماهیت چندهدفه بودن مسأله حاضر، مدل‌های‌‌ چانه‌ زنی بازگشتی برای انتخاب نقطه مورد توافق روی منحنی تعامل بین اهداف به‌کار رفته است. کارآیی ساختار پیشنهادی با استفاده از اطلاعات آبخوان دشت داریان در استان فارس، مورد ارزیابی قرار گرفت. نتایج حاصله نشان می‌دهد اعمال سیاست بهینه تخصیص حاصل از مدل چانه‌ زنی بازگشتی با هم‌آرایی موجب کاهش %54 برداشت از آبخوان و افزایش 2/4 متری سطح تراز آبخوان می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Developing an Optimal Groundwater Allocation Model Considering Stakeholder Interactions; Application of Fallback Bargaining Models

نویسندگان [English]

  • M.R. Alizadeh 1
  • M.R. Nikoo 2
  • Gh.R. Rakhshandehrou 3
1 M.Sc. Student, Department of Engineering, Civil and Environmental Engineering Division, Shiraz University,شیراز, Iran.
2 Assistant Professor, Department of Engineering, Civil and Environmental Engineering Division, Shiraz University, شیراز, Iran
3 Professor, Department of Engineering, Civil and Environmental Engineering Division, Shiraz University, Shiraz, Iran
چکیده [English]

In last few decades conflict-resolution models are being increasingly used in water resource management for cases such as the groundwater problems as an appropriate approach to consider the oppositions and trade-offs between the stakeholders involved in the conflict and to reach to an applicable optimal resolution. In this paper, by integrating simulation-optimization models of groundwater exploitation and bargaining methods, the optimal allocation scenarios are derived taking into account the preferences of the stakeholders and social criteria such as justice. Trade-off Pareto front between the rival objectives was computed through linking the NSGA-II multi-objective optimization model and M5P meta model which was trained and validated based on MODFLOW simulation results. Monte-Carlo method was used to develop a database for training and validating meta models for different allocation scenarios. Considering multi-objective nature of the problem, the best solutions on Pareto fronts were selected using fallback bargaining models. The effectiveness of the proposed methodology was verified in a case study performed on Daryan aquifer, Fars province, Iran. Results indicated that the total groundwater withdrawal after applying the optimal scenarios of allocation was reduced approximately 56% which resulted in the mean water level uplift of 4.2 meters in the aquifer

کلیدواژه‌ها [English]

  • Water Resources Management
  • Fallback Bargaining
  • NSGA-II optimization model
  • M5P simulation meta model
  • MODFLOW
شرکت سهامی آب منطقه­ای فارس (1392) مطالعات بهنگام­سازی اطلس منابع آب حوزه آبریز دریاچه­های طشک-بختگان و مهارلو. گزارش بیلان محدوده مطالعاتی داریان، 61 صفحه.
Bazargan-Lari MR, Kerachian R and Mansoori A (2009) A conflict-resolution model for the conjunctive use of surface and groundwater resources that considers water-quality issues: A case study. Environmental Management 43:470–482.
Bose D and Bose B (1995) Evaluation of alternatives for water project using a multiobjective decision matrix. Water International 20:169-175.
Brams SJ and Kilgour DM (2001) Fallback bargaining. Group Decision Negotiation 10:287–316
Brams SJ, Kilgour DM and Sanver M (2004) A minimax procedure for negotiating multilateral treaties. Department of Politics, New York University Press Condorcet JAN (1785) An essay on the application of analysis: 265-282.
Carraro C and Sgobbi A (2008) Modelling negotiated decision making in environmental and natural resource management: A multilateral, multiple issues, noncooperative bargaining model with uncertainty. Automatica, 44(6): 1488-1503.
Carraro C, Marchiori C and Sgobbi A (2007) Negotiating on water: Insights from noncooperative bargaining theory. Environment and Development Economics 12(2): 329-349.
Chae S and Heidhues P (2004) A group bargaining solution. Mathematical Social Sciences 48(1): 37-53.
Deb K, Agrawal S, Pratap A and Meyarivan T (2000) A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II, 6th International Conference Parallel Problem Solving from Nature PPSN VI, 18–20 September, Paris, France, 849-858
Ganji A, Khalili D and Karamouz M (2007) Development of stochastic dynamic Nash game model for reservoir operation. I. The symmetric stochastic model with perfect information, Advances in Water Resources 30(3): 528–542.
Goetz RU, Martinez Y and Rodrigo J (2008) Water allocation by social choice rules: The case of sequential rules. Ecological Economics 65(20):304–314.
Jafarzadegan K, Abed-Elmdoust A and Kerachian R (2013) A stochastic model for optimal operation of inter-basin water allocation systems: a case study. Stoch Environ Res Risk Assess 28(6):1343-1358.
Karamouz M, Kerachian R and Zahraie B (2004) Monthly water resources and irrigation planning: A case study of conjunctive use of surface and groundwater resources. Journal of Irrigation and Drainage 130(5):391-402.
Kerachian R and Karamouz M (2006) Optimal reservoir operation considering the water quality issues: A stochastic conflict resolution approach. Water Resources Research 42(12): 1-17.
Kerachian R and Karamouz M (2007) A stochastic conflict resolution model for water quality management in reservoir-river systems. Advances in Water Resources 30(4): 866-882.
Kerachian R, Fallahnia M, Bazargan-Lari MR, Mansoori A and Sedghi H (2010) A fuzzy game theoretic approach for groundwater resources management: Application of Rubinstein bargaining theory. Journal of Resources Conservation and Recycling 54(10):673-682.
Loaiciga HA (2004) Analytical game theoretic approach to groundwater extraction. Journal of Hydrology 297:22–33.
Madani K (2010) Game theory and water resources. Journal of Hydrology, 381(3-4):225-238.
Madani K and Dinar A (2010) Non-cooperative institutions for sustainable management of common pool resources. Working Paper 01-1210, Water Science and Policy Center, University of California, Riverside.
Madani K, Read L and Shalikarian L (2014) Voting under uncertainty: A stochastic framework for analyzing group decision making problems. Water Resources Management 28(7): 1839-1856.
Madani K, Shalikarian L and Naeeni STO (2011) Resolving hydro environmental conflicts under uncertainty using Fallback bargaining procedure. In Proceeding of the 2011 international conference on environment science and engineering (ICESE 2011), Bali Island, Indonesia, 192–196.
Madani K, Shalikarian L, Hamed A, Pierce T, Msowoya K and Rowney C (2015) Bargaining under uncertainty: A Monte-Carlo Fallback Bargaining method for predicting the likely outcomes of environmental conflicts. Conflict Resolution in Water Resources and Environmental Management, 201-211,DOI: 10.1007/978-3-319-14215-9_11
Mahjouri N and Ardestani M (2011) Application of cooperative and non-cooperative games in large-scale water quantity and quality management: A case study. Environmental Monitoring and Assessment 172(1-4): 157-169.
Mahjouri N and Bizhani-Manzar M (2013) Waste load allocation in rivers using Fallback bargaining. Water Resource Management 27(7):2125–2136.
Nikoo MR, Varjavand I, Kerachian R, Pirooz M and Karimi A (2014) Multi-objective optimum design of double-layer perforated-wall breakwaters: Application of NSGA-II and bargaining models. Applied Ocean Research 47:47–52.
Niksokhan MH, Kerachian R and Amin P (2009b) A stochastic conflict resolution model for trading pollutant discharge permits in river systems. Environmental Monitoring and Assessment 154(1-4): 219-232.
Parsapour-Moghaddam P, Abed-Elmdoust A and Kerachian R (2015) A heuristic evolutionary game theoretic methodology for conjunctive use of surface and groundwater resources. Water Resources Management, 29(11):3905-3918. 
Quinlan JR and Kohavi R (1999) Decision tree discovery, in Handbook of data mining and knowledge discovery. University Press: 267-276.
Raqual S, Szidarouszky F, Coppola E and Rojana A (2007) Application of game theory for groundwater conflict in Mexico. Journal of Environmental Management84(4):560-571.
Read L, Mokhtari S, Madani K, Maimoun M and Hanks C (2013) A multi-participant, multi-criteria analysis of energy supply sources for fairbanks, Alaska. World Environmental and Water Resources Congress 2013:1247-1257.
Reed PM and Minsker BS (2004) Striking the balance: Long-term groundwater monitoring design for conflict objectives. Journal of Water Resources Planning and Management 130(2):140-149.
Schweinzer P (2010) Sequential bargaining with common values. Journal of Mathematical Economics 46(1): 109-121.
Sheikhmohammady M and Madani K (2008) Bargaining over the Caspian Sea—the largest lake on the earth. In: Babcock RW, Walton R (eds) Proceeding of the 2008 World Environmental and Water Resources Congress, Honolulu, Hawaii. ASCE: 1-9.
Sheikhmohammady M, Kilgour DM and Hipel KW (2010) Modeling the Caspian Sea negotiations. Group Decis Negot 19(2):149–168.
White L (2008) Prudence in bargaining: The effect of uncertainty on bargaining outcomes. Games and Economic Behavior 62(1): 211-231.
Xiaokai L, Haifeng S and Xueyu L (2006) Modeling of water resources allocation regimes with a case study of the yellow river basin. 6th Meeting on Game Theory and Practice, Zaragoza, Spain.
Yandamuri SRM, Srinivasan K and Bhallamudi SM (2006) Multi objective optimal waste load allocation models for rivers using nondominated sorting genetic algorithm-II. Journal of Water Resources Planning and Management 132(3):133–43.
Yang Z, Zeng Y, Cai Y and Tan Q (2008) An integrated game-theory based model for trans-boundary water resources management in north china: A case study in the Guanting reservoir basin (GRB), Beijing. International Journal of Software Engineering and Knowledge Engineering 18(4):461-483.