طراحی شبکه بهینه چاه های پایش کیفی آب زیرزمینی با استفاده از مدلهای MODFLOW و MT3D

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران.

2 دانش‌آموخته کارشناسی ارشد مهندسی منابع آب، گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران.

چکیده

یک شبکه چاه­‌های پایش مناسب می‌­تواند داده‌­های کمی و کیفی ارزشمندی برای تصمیم­‌‍گیری آگاهانه در مورد وضعیت محیط­زیست فراهم کند. انتخاب تعداد بهینه چاه­‌های پایش و توزیع مکانی آن­ها بزرگترین چالش هیدروژئولوژیست‌­ها است. از سوی دیگر، توزیع نامناسب چاه­‌های پایش یا تعداد ناکافی آن­ها به درستی وضعیت زیست­‌محیطی منطقه را نشان نمی­‌دهد. در این مطالعه شبکه پایش فعلی در منطقه موردمطالعه با توجه به نتایج شبیه‌­سازی مدل­‌های MODFLOW و MT3D ارزیابی شد و سپس در ادامه شبکه پایش با توجه به چاه­‌های موجود در منطقه با روش بهینه‌­سازی توسعه‌‎یافته در این مطالعه طراحی شد. مدل بهینه‌­سازی شامل دو تابع هدف حداکثر کردن ضریب نش- ساتکلیف و حداقل کردن هزینه­‌ها به طور همزمان است که با اعمال ضریب وزنی W به صورت یک تابع هدف تعریف شد. از الگوریتم ژنتیک برای حل مدل بهینه­‌سازی استفاده شد. نتایج ارزیابی‌ها نشان داد که انتخاب جواب بهینه وابستگی زیادی به مقدار ضریب وزنی W دارد. بنابراین بهترین مقدار W با توجه به برقراری یک رابطه قابل قبول بین هزینه و پراکنش مکانی چاه­‌ها در منطقه انتخاب می­‌شود. در ادامه برای انتخاب بهترین جواب از شاخص‌­های PBIAS ،RMSE و ضریب رگرسیون نیز استفاده شد که مقادیر این شاخص‌­ها در این مطالعه قابل قبول بوده است. همچنین، بزرگ‌تر بودن میانگین مقادیر TDS بهینه از میانگین مقادیر TDS مشاهده‌ای نشان می­‌دهد که شبکه بهینه، داده‌­های کیفی آب زیرزمینی مناطق آلوده­تر را فراهم می‌­کند. روش ارائه شده در این مطالعه برای سایر آلاینده­‌ها باید مورد ارزیابی و صحت­‌سنجی قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design of the Optimal Groundwater Quality Monitoring Well Network Using MODFLOW and MT3D Models

نویسندگان [English]

  • Somaye Janatrostami 1
  • Ali Salahi 2
  • Fatemeh Usefi 2
1 ssistant Professor, Department of Water Engineering, College of Agricultural Sciences, University of Guilan, Rasht, Iran.
2 M.Sc. Graduate of Water Resources Engineering, Department of Water Engineering, College of Agricultural Sciences, University of Guilan, Rasht, Iran.
چکیده [English]

A properly monitoring well network can provide quantity and quality data needed to make informed decision making about the state of the environment. The selection of the optimum number of monitoring wells and their spatial distribution is a major challenge for the hydrogeologist. On the other hand, improper distribution of monitoring wells or an insufficient number of them does not properly represent the state of the environment. In this study, the current monitoring network in the study area was evaluated according to the simulation results of MODFLOW and MT3D models. Then, the monitoring network was designed based on the wells in the area with the optimization method developed in this study. The optimization model consists of two objective functions to maximize the Nash Sutcliffe coefficient and to minimize the costs simultaneously, which was defined as one target function by applying the weighting factor W. Genetic algorithm was used to solve the optimization model. The results showed that the finding of the optimal value depends on the value of the weight coefficient (W). Therefore, the best value of W is selected according to an acceptable trade-off between cost and spatial distribution of wells in the area. To choose the best solution, PBIAS, RMSE, and regression coefficients were used in which their values were acceptable in this study. Also, the higher the average optimal TDS values than the average observed TDS values indicated that the optimal network could provide groundwater quality data for more polluted areas. The method presented in this study for other pollutants should be evaluated and validated.

کلیدواژه‌ها [English]

  • Genetic Algorithm
  • optimization
  • MODFLOW
  • MT3D
Alizadeh M R, Nikoo M R, and Rakhshandehroo G R (2017) Hydro-environmental management of groundwater resources: A fuzzy-based multiobjective compromise approach. Journal of Hydrology 551:540–554
Ayvaz M T, and Elçi A (2018) Identification of the optimum groundwater quality monitoring network using a genetic algorithm based optimization approach. Journal of Hydrology 563:1078-109
Ayvaz M T, and Kentel E (2015) Identification of the best booster station network for a water distribution system. Journal of Water Resources Planning and Management 141:4014-4076
Baalousha H (2010) Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: a case study from Heretaunga Plains, New Zealand. Agricultural Water Management 97(2):240-246
Barca E, Bruno D E, Lay-Ekuakille A, Maggi S, and Passarella S (2018) Retrospective analysis: A validation procedure for the redesign of an environmental monitoring network. Measurement 113:211-219
Bashi-Azghadi SN, and Kerachian R (2010) Locating monitoring wells in groundwater systems using embedded optimization and simulation models. Science of the Total Environment 408(10):2189–2198
Chadalavada S, and Datta B (2008) Dynamic optimal monitoring network design for transient
transport of pollutants in groundwater aquifers. Water Resources Management 22:651–670
Datta B, Chakrabarty D, and Dhar A (2009) Optimal dynamic monitoring network design and identification of unknown groundwater pollution sources. Water Resources Management 23:2031-2049
Dhar A, and Datta B (2010) Logic-based design of groundwater monitoring network for redundancy reduction. Journal of Water Resources Planning and Management 136(1):88–94
Fisher J C (2013) Optimization of water-level monitoring networks in the eastern Snake River Plain aquifer using a kriging-based genetic algorithm method. U.S. Geological Survey Scientific Investigations Report 2013-5120 (DOE/ID-22224), Reston, VA.
Ghodrati A R, Sobh Zahedi S, and Dadashi M A (2007) Investigation on Industrial Pollution of Zarjub River- Rasht City- Guilan Province. Journal of the Iranian Natural Resources 60(1):213-224
Guo Y, Wang J F, and Yin X L (2011) Optimizing the groundwater monitoring network using MSN theory. Procedia - Social and Behavioral Sciences 21:240–242
Jin X, Ranjithan R S, and Mahintakumar G (2014) A monitoring network design procedure for three-dimensional (3d) groundwater contaminant source identification. Environmental Forensics 15(1):78-96
Khader A, and McKee M (2014) Use of a relevance vector machine for groundwater quality monitoring network design under uncertainty. Environmental Modelling & Software 57:115-126
Kim K H, and Lee K K (2007) Optimization of groundwater-monitoring networks for identification of the distribution of a contaminant plume. Stochastic Environmental Research and Risk Assessment 21(6):785–794
Luo Q, Wu J, Yang Y, Qian J, and Wu J (2016) Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty. Journal of Hydrology 534:352-363
McLean M I, Evers L, Bowman A W, Bonte M, and Jones W R (2019) Statistical modelling of groundwater contamination monitoring data: A comparison of spatial and spatiotemporal methods. Science of The Total Environment 652:1339-1346
Mogheir Y, Lima J L M P, and Singh V P (2009) Entropy and multi-objective based approach for groundwater quality monitoring network assessment and redesign. Water Resources Management 23:1603-1620
Moriasi  D N, Arnold J G, Van Liew M W, Bingner R L, Harmel R D, and Veith T L (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers 50(3):885-900
Rahmawati N, Vuillaume J F, and Purnama I L S (2013) Salt intrusion in Coastal and Lowland areas of Semarang City. Journal of Hydrology 494:146–159
Santhi C, Arnold J G, Williams J R, Dugas W A, Srinivasan R, and Hauck L M (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association 37:1169-1188
Tabatabaei S H, and Ghazali M (2011) Accuracy of interpolation methods in estimating the groundwater level (Case study: Farsan- Jooneghan and SefidDasht Aquifers). Journal of Water and Soil Science 15(57):11-22 (In Persian)
Van Liew M W, Arnold J G, and Garbrecht J D (2003) Hydrologic simulation on agricultural watersheds: Choosing between models. Transactions of the American Society of Agricultural Engineers 46(6):1539-1551
Wilson C R, Einberger C M, Jackson R L, and Mercer R B (1992) Design of ground‐water monitoring networks using the Monitoring Efficiency Model (MEMO). Groundwater 30(6):965-970
Wu J, Zheng C, and Chien C C (2005) Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. Journal of Contaminant Hydrology 77:41-65
Yakirevich A, Pachepsky Y A, Gish TJ, Guber A K, Kuznetsov M Y, Cady R E, and Nicholson T J (2013) Augmentation of groundwater monitoring networks using information theory and ensemble modeling with pedotransfer functions. Journal of Hydrology 501(25):13-24
Yang X S, Gandomi A H, Talatahari S, and Alavi A H (2012) Geotechnical and transport engineering (1st ed.). Metaheuristics in Water, Elsevier, Amsterdam
Zheng C, Hill M C, and Hsieh P A (2001) MODFLOW-2000, the US Geological Survey modular ground-water model: User guide to the LMT6 package, the linkage with MT3DMS for multi-species mass transport modeling.
Zheng C, Hill M C, Cao G, and Ma R (2012) MT3DMS: Model use, calibration, and validation. Transactions of the ASABE (American Society of Agricultural and Biological Engineers) 55(4):1549–1559