تأثیر دما بر برآورد جریان خروجی از حوضه آبریز توسط شبکه‌های عصبی پرسپترون و کانولوشنی همراه با تحلیل موجک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی عمران، واحد نجف‌آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران.

2 استادیار، گروه مهندسی عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.

3 استادیار، دانشکده مهندسی برق و مرکز تحقیقات پردازش دیجیتال و بینایی ماشین، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.

4 دانش آموخته دکتری، کارشناس طراح، مهندسین مشاور طرح و تحقیقات آب و فاضلاب، اصفهان، ایران

چکیده

تخمین جریان خروجی از یک حوضه آبریز تحت تأثیر پارامترهای مختلف، فرایندی پیچیده بوده و در صورت کمبود اطلاعات حوضه، استفاده از مدل‌های تحلیلی امکان‌پذیر نیست. از سوی دیگر، مدل‌‌های هوش مصنوعی نیاز به مشخصات حوضه نداشته و برخی مانند شبکه عصبی کانولوشنی (CNN) اخیراً در هیدرولوژی کاربرد فراوانی داشته‌اند. هدف این تحقیق بررسی عملکرد CNN در برآورد جریان خروجی بر حسب پارامترهای دما، بارش و دبی ورودی به حوضه بوده است. در این تحقیق از CNN، ترکیب CNN با تحلیل موجک (WCNN) و از شبکه عصبی پرسپترون (MLP) جهت ارزیابی ‌تأثیر دما بر برآورد جریان خروجی در حوضه آبریز قلعه شاهرخ چلگرد در بازه زمانی سال 1992 تا 2015 میلادی استفاده شد. هر مدل 20 مرتبه اجرا شده و میانگین مقادیر ضریب همبستگی (R)، ریشه میانگین مربعات خطا (RMSE) و ضریب نش- ساتکلیف (NS) محاسبه شده‌اند. تأخیر یک، دو و سه ماهه داده‌های دما و بارندگی نیز به ‌عنوان داده ورودی لحاظ شده است. همچنین، از تحلیل موجک جهت پیش‌پردازش داده‌ها در کاهش نوفه استفاده شده و نتایج نشان داد که CNN  با تأخیر سه ماهه دارای مقادیر، و به‌‌ترتیب برابر (m3/s) 0/922 ،14/20 و 0/772 بود. در مقابل، روش WCNNT3  با موجک Daubechies  که ترکیب CNN و تحلیل موجک است، با عملکرد سطح چهار و وضوح دو (WCNNT3-db42) دارای مقادیر شاخص‌های ارزیابی برابر (m3/s) 0/945 ،9/45 و 0/863 بود. بر این اساس، CNN عملکرد بهتری نسبت به MLP داشته و روش WCNN  نیز با کمک تحلیل موجک، کارایی و عملکرد بهتری نسبت بهCNN  از خود نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Temperature Effect on the Estimation of Basin Outflow by Perceptron and Convolutional Neural Networks with Wavelet Analysis

نویسندگان [English]

  • Iman Naderirad 1
  • Mohsen Saadat 2
  • Avid Avokh 3
  • Milad Mehrparvar 4
1 Ph.D. Candidate, Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 Assistant Professor, Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
3 Assistant Professor, Department of Electrical Engineering and Digital Processing and Machine Vision Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
4 Ph.D., Expert in Design Unit, Water and Wastewater Consulting Engineering Research and Design, Isfahan, Iran
چکیده [English]

Estimation of basin outflow under the influence of various parameters is a complex process and in case of basin information lack, the analytical models are not applicable. On the other hand, Artificial Intelligence models do not require basin information, and some, such as the convolutional neural network (CNN), have recently been widely used in hydrology. The purpose of this study was to investigate the performance of CNN in estimating the outflow in terms of temperature, precipitation and inflow to the basin. In this study, CNN, combination of CNN with wavelet analysis (WCNN), and perceptron neural network (MLP) were used to evaluate the effect of temperature on the outflow within the Ghaleh Shahrokh Chelgard basin from 1992 to 2015. Each model was run 20 times and the mean values ​​of correlation coefficient
(R), root mean square error (RMSE) and Nash Sutcliffe coefficient (NS) were calculated. Lags of one, two and three-month of temperature and rainfall data are also included as input data. Wavelet analysis was used for noise reduction and the results showed that CNN with a lag of three months had ,  and  equal to 14.20 (m3/s), 0.922 and 0.772, respectively. In contrast, the WCNNT3 method with Daubechies wavelet, which is a combination of CNN and wavelet analysis, ​​with level four performance and resolution two (WCNNT3-db42) had indices respectively equal to 9.45 (m3/s), 0.945 and 0.863. Accordingly, CNN performed better than MLP, and the WCNN method with wavelet analysis showed better performance than CNN.

کلیدواژه‌ها [English]

  • Catchment Outflow. Convolutional Network
  • Wavelet Analysis
  • Noise Reduction. Ghaleh Shahrokh
Anctil F, Perrin C, and Andréassian V (2004) Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models. Environmental Modelling and Software 19(4):357–368
Ghorbani MA, Azani A, and Vanolya SM (2015) Rainfall-runoff modeling using hybrid intelligent models. Journal of Iran-Water Resources Research 11(2):146-150 (In Persian)
Hu G, Wang K, Peng Y, Qiu M, Shi J, and Liu L (2018) Deep learning methods for underwater target feature extraction and recognition. Computational Intelligence and Neuroscience, doi: 10.1155/2018/1214301
Kim B, Jeong H, Kim H, and Han B (2017) Exploring wavelet applications in civil engineering. KSCE Journal of Civil Engineering 21(4):1076–1086
Liu Y, Zhang T, Kang A, Li J, and Lei X (2021) Research on runoff simulations using deep-learning methods. Sustainability (Switzerland) 13(3):1–20
Maheswaran R and Khosa R (2012) Comparative study of different wavelets for hydrologic forecasting. Computers and Geosciences 46:284–295
Mehrparvar M and Asghari K (2018) Modular optimized data assimilation and support vector machine for hydrologic modeling. Journal of Hydroinformatics 20(3):728–738
Mosavi A, Ozturk P, and Chau KW (2018) Flood prediction using machine learning models: Literature review. Water (Switzerland) 10(11):1–40
Nourani V (2017) An Emotional ANN (EANN) approach to modeling rainfall-runoff process. Journal of Hydrology, Elsevier B.V. 544:267–277
Nourani V and Komasi M (2013) A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process. Journal of Hydrology, Elsevier B.V. 490:41–55
Nourani V, Komasi M, and Mano A (2009) A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resources Management 23(14):2877–2894
Nourani V and Molajou A (2017) Application of a hybrid association rules/decision tree model for drought monitoring. Global and Planetary Change 159:37–45
Nourani V and Parhizkar M (2013) Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall-runoff modeling. Journal of Hydroinformatics 15(3):829–848
Partovian A, Nourani V, and Alami MT (2016) Hybrid denoising-jittering data processing approach to enhance sediment load prediction of muddy rivers. Journal of Mountain Science 13(12):2135–2146
Sang YF, Wang D, Wu JC, Zhu QP, and Wang L (2009) Entropy-based wavelet de-noising method for time series analysis. Entropy 11(4):1123–1147
Shafeizadeh M, Fathian H, and Nikbakht AR (2019) Continuous rainfall-runoff simulation by artificial neural networks based on selection of effective input variables using partial mutual information (PMI) algorithm. Journal of Iran-Water Resources Research 15(2):144-161 (In Persian)
Sharghi E, Nourani V, Molajou A, and Najafi H (2019) Conjunction of emotional ANN (EANN) and wavelet transform for rainfall-runoff modeling. Journal of Hydroinformatics 21(1):136–152
Shoaib M, Shamseldin AY, Khan S, Sultan M, Ahmad F, Sultan T, Dahri ZH, and Ali I (2019) Input selection of wavelet-coupled neural network models for rainfall-runoff modelling. Water Resources Management 33(3):955–973
Song CM (2022) Data construction methodology for convolution neural network based daily runoff prediction and assessment of its applicability. Journal of Hydrology, Elsevier B.V. 605:127324
Van SP, Le HM, Thanh DV, Dang TD, Loc HH, and Anh DT (2020) Deep learning convolutional neural network in rainfall-runoff modelling. Journal of Hydroinformatics 22(3):541–561
Wang W and Ding J (2003) Wavelet network model and its application to the prediction of hydrology. Nature and Science 1(1):67–71
Xu Y, Liu Yi, Jiang, Z and Yang, X (2021) Runoff prediction model based on improved convolutional neural network runoff prediction model based on improved convolutional neural network. Journal of Water Resources Management, 1-48, DOI: https://doi.org/10.21203/rs.3.rs-760130/v1.