تحلیل فراوانی منطقه‌ای سیل در غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس پژوهشی بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران.

2 دانش‌‎آموخته کارشناسی ارشد مهندسی آبخیزداری، گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران.

چکیده

در چند دهه اخیر کشور ایران و به ویژه مناطق غربی آن از وقوع انواع سیلاب‌های مخرب رنج برده‌اند. از سوی دیگر ارائه برنامه‌ریزی‌های مدیریتی و طراحی سازه‌های هیدرولیکی برای کاهش سیل (Flood mitigation)، نیازمند اطلاعات از بزرگی سیلاب‌ها به ازای احتمال وقوع مشخص می‌باشد. لذا در پژوهش حاضر سعی شد تا با استفاده از گشتاورهای خطی و روش شاخص سیل، مناطق همگن هیدرولوژیکی و منحنی‌های رشد منطقه‌ای برای حداکثر دبی روزانه در 62 زیرحوضه از حوضه‌های کارون بزرگ و کرخه تعیین شود. علاوه‌بر این اثر سازه‌های هیدرولیکی و خشکسالی بر ماهیت استوکاستیک و ایستایی داده‌ها توسط آزمون‌ روند من-کندال، آزمون تعیین نقطه آغاز تغییرات پتیت و بررسی‌های نموداری مورد ارزیابی قرار گرفت. همچنین، بر اساس ناحیه‌بندی و آزمون‌های همگنی، پنج زیرناحیه همگن برای زیرحوضه‌ها مشخص شد. نتایج آزمون نکویی برازش نشان داد که توزیع‌های پارتو تعمیم‌یافته (GPA) برای زیرناحیه‌های اول و دوم، نرمال تعمیم‌یافته (GNO) برای زیرناحیه سوم و لجستیک تعمیم‌یافته (GLO) برای زیرناحیه‌های چهارم و پنجم دارای بهترین برازش هستند. به همین ترتیب دبی متناظر با دوره بازگشت‌های 2، 5، 10، 25، 50، 100، 500 و 1000 سال برای همه زیرحوضه‌ها برآورد گردید. نتایج تحلیل فراوانی منطقه‌ای مشخص کرد که به ازای دوره بازگشت 100 سال، زیرحوضه‌های ناحیه پنجم با میانگین 4060 متر مکعب بر ثانیه دارای بیش‌ترین مقادیر حداکثر دبی‌ روزانه هستند. به همین ترتیب در زیرحوضه‌های زیرناحیه‌های اول تا چهارم میانگین حداکثر دبی‌های روزانه با دوره بازگشت 100 سال به ترتیب 632، 682، 460 و 429 متر مکعب بر ثانیه برآورد گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Regional Flood Frequency Analysis in West of Iran

نویسندگان [English]

  • Vahid Chitsaz 1
  • Poria Mohit Esfahani 2
1 Researcher in Soil Conservation and Watershed Management Research Department, Isfahan Agricultural and Natural Resources Research and Education Center, AREEO, Isfahan, Iran.
2 M.Sc. Graduate of Watershed Management, Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran.
چکیده [English]

Over recent decades Iran and especially its western regions have suffered from devastating floods. Planning and designing hydraulic structures require information from flood magnitude corresponding to a given occurrence probability. Hence, in this study, we aimed to determine flood homogeneous regions and regional growth curves using L-moments and flood index method for annual maximum flow of 62 sub-basins in Great-Karoon and Karkhe basins. Moreover, the impacts of droughts and hydraulic structures on the stationary and stochastic nature of floods were investigated using Mann-Kendall trend test, Pettitt’s change point detection test (CPD) and graphical interpretations. It was found that there are five hydrological homogeneous regions in the study area. The goodness of fit tests results showed that the Generalized Pareto (GPA) distribution for the first and second regions, the Generalized Normal (GNO) distribution for the third region and the Generalized Logistic (GPA) distribution for the fourth and fifth regions are the most appropriate regional statistical distributions. Also, maximum daily flows corresponding to 2, 5, 10, 25, 50, 100, 500 and 1000-year return periods were estimated for all study sub-basins.  Regional flood frequency analysis revealed that for 100-year return period the fifth region’s sub-basins, with 4060 m3/s discharge on average, have the highest maximum daily flow. The average 100-year maximum daily flows in the regions I, II, III and IV were estimated around 632, 682, 460 and 429 (m3/s), respectively.

کلیدواژه‌ها [English]

  • Frequency Analysis
  • Trend Test
  • Natural Hazards Risk
  • L-Moments
  • Growth Curve
  • Dam
Abghari H, Tabari H, Talaee PH (2013) River flow trends in the west of Iran during the past 40 years: impact of precipitation variability. Global and Planetary Change 101:52-60
Allahbakhshian-Farsani P, Vafakhah M, Khosravi-Farsani H, Hertig E (2020) Regional flood frequency analysis through some machine learning models in semi-arid regions. Water Resources Management 34(9):2887-2909
Ashraf S, AghaKouchak A, Nazemi A, Mirchi A, Sadegh M, Moftakhari HR, Hassanzadeh E, Miao CY, Madani K, Mousavi Baygi M, Anjileli H, Arab DR, Norouzi H, Mazdiyasni O, Azarderakhsh M, Alborzi A, Tourian M, Mehran A, Farahmand A, Mallakpour I (2019) Compounding effects of human activities and climatic changes on surface water availability in Iran. Climatic Change 152(3):379-391
Ellouze M, Abida H (2008) Regional flood frequency analysis in Tunisia: identification of regional distributions. Water Resources Management 22(8):943-957
Ghadami M, Raziei T, Amini M, Modarres R (2020) Regionalization of drought severity–duration index across Iran. Natural Hazards 103(3):2813-2827
Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form. Water Resources Research 15:1049–1054
Griffis VW, Stedinger JR (2007) Evolution of flood frequency analysis with Bulletin 17. Journal of Hydrologic Engineering 12(3):283-297
Guldemir H, Sengur A (2006) Comparison of clustering algorithms for analog modulation classification. Expert Systems with Applications 30:642-649
Hailegeorgis TT, Alfredsen K (2017) Regional flood frequency analysis and prediction in ungauged basins including estimation of major uncertainties for mid-Norway. Journal of Hydrology: Regional Studies 9:104-126
Hosking JRM, Wallis JR, Wood EF (1985). An appraisal of the regional flood frequency procedure in the UK flood studies report. Hydrological Sciences Journal 30(1):85-109
Hosking JRM (1990) L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society 52:105-124
Hosking JRM (1991) Approximations for use in constructing L-moment ratio diagrams. Research.Rep. RC 16635, IBM Research Division, TJ Watson Reasearch Center
Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resources Research 29(2):271–281
Hosking JRM, Wallis JR (1997) Regional frequency analysis: An approach based on l-moments. Cambridge University Press, 244 p
Kim H, Shin JY, Kim T, Kim S, Heo JH (2020) Regional frequency analysis of extreme precipitation based on a nonstationary population index flood method. Advances in Water Resources 146:1-43
Kumar R, Chatterjee C (2005) Regional flood frequency analysis using L-Moments for North Brahmaputra region of India. Journal of Hydrologic Engineering 10:1-7
Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles. Water Resource Research 15(5):1055-1064
Libiseller C, Grimvall A (2002) Performance of partial Mann–Kendall tests for trend detection in the presence of covariates. Environmetrics: The official journal of the International Environmetrics Society 13(1):71-84
Malekinezhad H, Nachtnebel HP, Klik A (2011) Regionalization approach for extreme flood analysis using L-moments. Journal of Agricultural Science and Technology 13:1183-1196
Malekinezhad H, Zare-Garizi A (2014) Regional frequency analysis of daily rainfall extremes using L-moments approach. Atmósfera 27(4):411-427
Mann HB (1945) Nonparametric tests against trend. Econometrica: Journal of the econometric society:245-259
McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology 179–184
Mehdi Nasab M (2020) Survey of 1 April flood in Kashkan Catchment in Lorestan Province and presenting solutions. Journal of Environment and Suprasectorial Development 5(67):17-30 (In Persian)
Mei X, Van Gelder PHAJM, Dai Z, Tang Z (2017) Impact of dams on flood occurrence of selected rivers in the United States. Frontiers of Earth Science 11(2):268-282
Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: Whither water management? Earth 4(20):573-574
Modarres R, Sarhadi A (2010) Frequency distribution of extreme hydrologic drought of southeastern semiarid region, Iran. Journal of Hydrologic Engineering 15(4):255-264
Modarres R, Soltani S (2007) Flood frequency analysis using L-moments, 7th international seminar on river engineering, Shahid Chamran University of Ahvaz, Iran (In Persian)
Mohammadi M, Talebi A (2020) Regional frequency analysis of maximum 24-hour precipitation in arid lands using the L-Moments Approach (Case study: Yazd Province). Desert Management 8(15):37-52 (In Persian)
Mohit Isfahani P, Modarres R (2020) The generalized additive models for nonstationary flood frequency analysis. Iran-Water Resources Research 16(3):376-387 (In Persian)
Noto LV, La Loggia G (2009) Use of L-moments approach for regional flood frequency analysis in Sicily, Italy. Water Resources Management 23(11):2207-2229
Nam W, Kim S, Kim H, Joo K, Heo JH (2015) The evaluation of regional frequency analyses methods for nonstationary data. Proceedings of the International Association of Hydrological Sciences 371(1):95–98
Pansera WA, Gomes BM, Boas MAV, de Mello EL (2013) Clustering rainfall stations aiming regional frequency analysis. Journal of Food, Agriculture, and Environment 11(2):877-885
Pettitt AN (1979) A non-parametric approach to the change point problem. Journal of the Royal Statistical Society Series C, Applied Statistics 28:126-135
Rahimi D, Khoshhal Dastjerdi J, Rahimi D (2020) Trend analysis of maximum flood in the Karkheh basin. Journal of Natural Environmental Hazards 9(26):43-58 (In Persian)
Rahnama M, Rostami R (2007) Halil-River Basin regional flood frequency analysis based on L-moment Approach. International Journal of Agricultural Research 2:261-267
Sharifi Garmdareh E, Vafakhah M, Eslamian S (2018) Regional flood frequency analysis using support vector regression in arid and semi-arid regions of Iran. Hydrological Sciences Journal 63(3):426-440
Special Panel on National Floods Report (SPNFR) (2020) Story, analyze, experiences and offers. 314p (In Persian)
Strnad F, Moravec V, Markonis, Y, Máca P, Masner J, Stočes M, Hanel M (2020) An index-flood statistical model for hydrological drought assessment. Water 12(4):1213-1229
Zamani R, Tabari H, Willems P (2015) Extreme streamflow drought in the Karkheh river basin (Iran): Probabilistic and regional analyses. Natural Hazards 76(1):327-346