تحقيقات منابع أب ايران **Iran-Water Resources** Research

Evaluation and Calibration of Three Evapotranspiration Equations in a Semi-Arid Region

H. R. Fooladmand¹, A. R. Sepaskhah²

Abstract

This paper evaluates three different methods for estimation of reference crop evapotranspiration (ET_o) in Bajgah area, Fars province, in Iran. Monthly values of ET_o were estimated with Penman-FAO, Penman-Monteith and Hargreaves equations using the mean monthly weather data from 1986-2002 (17 years). The Penman-Monteith and Hargreaves equations were calibrated based on Penman-FAO method which was recognized as the most appropriate equation for ET_o estimation, according to the previous studies. This study showed that the results of Penman-Monteith and Hargreaves equations are similar to but somehow they underestimate ET_o compared with Penman-FAO method. To calibrate the Penman-Monteith and Hargreaves equations, a linear regression was used. The results of calibration for Penman-Monteith equation showed the variation of the slope of the line and ET_0 the calibration coefficient (C_H) of the Hargreaves equation for each month. annual ET_o estimated.

Keywords: Reference crop, Potential evapotranspiration, Penman-FAO, Penman-Monteith, Hargreaves

1-Marvdasht Islamic Azad University, Marvdasht, Email:hrfoolad@yahoo.com 2-Professor, Department of Irrigation, Shiraz University, Shiraz, Email: sepas@shirazu.ac.ir ارزیابی و واسنجی سه معادله تبخیر تعرق در منطقه ای نیمه خشک

حميد رضا فولادمند وعليرضا سپاسخواه

چکیدہ

در این مقاله سه روش مختلف برای تخمین تبخیر تعرق بالقوه سطوح گیاهی (ET) در منطقه باجگاه (استان فارس, ایران) ارزیابی می شود. با استفاده از میانگین داده های هواشناسی در سالهای ۲۰۰۲– ۱۹۸۶ در (۱۷ سال), مقادیر ماهانه ET با معادلههای پن من – فائو, پن من – مانتیث و هارگریوز تخمین زده شد. معادلههای پن من – مانتیث و هارگریوز بر اساس روش پنمن– فائو که در مطالعات قبلی مناسب ترین معادله برای تخمین ET0 شناخته شده واسنجی گردید.

بررسیها نشان داد که نتایج معادله های پن من – مانتیث و هارگریوز تا اندازهای به هم شبیهاند. ولی میزان ET_0 را برای همه سالها کمتر از روش پن من – فائو تخمین می زنند. برای واسنجی معادلههای پن من – مانتیث و هارگریوز رابطه رگرسیون خطی به کار برده شد. همچنین در واسنجی معادله هارگریوز، تغییرات شیب خط برای مقادیر مختلف ET_0 در دو روش محاسبه کویر ضرایب واسنجی شده معادله هارگریوز (C_h) برای ماههای مختلف بدست آمد. همچنین ET_0 سالانه بدست آمد.

کلمات کلیدی: تبخیر تعرق بالقوه، سطوح گیاهی مرجع، پنمن– فائو , پن من – مانتیث , هارگریوز

۱ – هیئت علمی دانشگاه آزاد واحد مرودشت
 ۲ – استاد بخش آبیاری دانشگاه شیراز – شیراز

Introduction

In semi-arid regions, water use in irrigated agriculture is very important for different aspects of water resources management. In most conditions, irrigation water use is calculated based on crop potential evapotranspiration. Crop potential evapotranspiration (ET_c) is estimated as follows:

$$ET_c = K_c ET_o \tag{1}$$

Where K_c is the crop coefficient and ET_o is reference crop potential evapotranspiration. Thus, most irrigation engineers use ETo to estimate different crop water requirements (Martinez-Cob and Tejero-Juste, 2004). Therefore, using historical ET_o for irrigation scheduling and system design is very common. Historical ET_0 is simply long-term average value. Because of the consistency of climate in the most regions, variability in ET_o from year to year (or each months of year during several years) is assumed to be small, and thus differences between a historical value based on many years of data and actual values for any given year would be small. The main advantages of using historical ET_o are convenient and the ability to predict the irrigation requirements throughout the growing season (Hanson et al., 1999).

Although several equations have been proposed to estimate ET_o, there is no universal consensus on the suitability of any given equation for a given climate, and they require rigorous local calibration (Dehghani-Sanij et al., 2004). The most common methods are Penman-FAO (Doorenbos and Pruitt, 1977) and Penman-Monteith (Allen et al., 1998). To calculate ET_o by these methods, minimum and maximum air temperature, minimum and maximum relative humidity, sunshine and wind speed data, must be available. Hargreaves equation is another method that only needs minimum and maximum air temperature data (Hargreaves and Samani, 1985). The Hargreaves equation tends to overestimate ET_o in humid regions and underestimate ETo in very dry regions (Xu and Singh, 2002). So, it is essential to calibrate each equation locally.

Some investigators tried to determine the best method of ET_o estimation in the Bajgah area, Fars province, in Iran. Malek (1982) showed that the Penman-FAO equation gives a good estimation of ET_o in this area. Sepaskhah (1999) showed that Penman-FAO equation is more appropriate than Penman-Monteith for the Bajgah area. Furthermore, Sepaskhah and Fooladmand (2004) showed that the Penman-FAO equation is the most appropriate method for estimating ET_o in the Bajgah area. This is optained by using water balance model for microcatchment water harvesting systems for rainfed vineyard.

Furthermore, Zand-Parsa et al. (1996) calculated ET_o based on Penman-FAO method for most synoptic meteorological stations in Iran. They showed that type III Pearson and Normal distributions are the most appropriate distributions for all stations in Iran. Later, Zand-Parsa and Sepaskhah (1996) introduced a simple method for calculating ET_o based on type III Pearson and Normal distributions for different probabilities of occurrence.

The purpose of this study is to evaluate the different methods of estimation for reference crop evapotranspiration (ET_o) in the Bajgah area, Fars province, I. R. of Iran, and calibrating the Penman-Monteith and Hargreaves equations based on Penman-FAO equation in monthly bases.

Materials and Methods

Fars province is located in the southern part of I. R. of Iran, at $50^{\circ}30'$ to $55^{\circ}38'$ longitude and $27^{\circ}3'$ to $31^{\circ}42'$ N latitude, with an arable land area of 1.32 million km². The mean annual precipitation for the province ranges from 50 to 1000 mm (Sadeghi et al., 2002). The Bajgah area is located 16 km north of Shiraz (center portion of Fars province) at $52^{\circ}46'$ longitude, $29^{\circ}50'$ N latitude. Bajgah elevation is 1810 m above the mean sea level and its mean annual rainfall is approximately 420 mm (Fooladmand and Sepaskhah, 2004). The climate of this region is semi-arid as reported by Malek (1984). Also, Malek (1984) showed that the most weather data in the Bajgah area is homogeneous.

Because of the lack of measured ET_o data in Bajgah area, calibration of Penman-Monteith and Hargreaves equations based on Penman-FAO equation is required. This is done using water balance model for microcachment water harvesting systems for rainfed vineyard. For this purpose the mean monthly weather data of the Bajgah area during 1986-2002 (17 years) were used for estimation of ET_o with Penman-FAO, Penman-Monteith and Hargreaves equations. The mean monthly weather data of the study area are shown in Table 1. The Penman-FAO (Doorenbos and Pruitt, 1977) equation is as follows:

$$ET_o = C \times \left[0.408 \times W \times R_n + (1 - W) \times f_u \times (e_s - e_a) \right]$$
(2)

where ET_{o} is the reference crop potential evapotranspiration (mm d⁻¹), C is the coefficient that depends on the wind speed at 2 m height (U₂), maximum relative humidity (RH_{max}) and solar radiation (R_s), W is the coefficient related to the temperature, R_n is the net radiation (MJ m⁻² d⁻¹), f_u is the wind function, and e_s, e_a are the saturation and actual vapor pressures (mbar), respectively. More details are reported by Doorenbos and Pruitt (1977). The Penman- Monteith

(Allen et al., 1998) equation is as follows:

Volume 1, No. 2, Summer 2005 (IR-WRR) 3 ◊ \ΥΥ

$$ET_o = \frac{0.408 \times \Delta \times (R_n - G) + \gamma \times \frac{900}{T_m + 273} \times U_2 \times (e_s - e_a)}{\Delta + \gamma \times (I + 0.34 \times U_2)}$$
(3)

where ET_{o} is the reference crop potential evapotranspiration (mm per day), R_n is the net radiation (MJ m⁻² d⁻¹), G is the soil heat flux density (MJ m⁻² d⁻¹), T is the air temperature at 2 m height (°C), U₂ is the wind speed at 2 m height (m s⁻¹), and e_s and e_a are the saturation and actual vapor pressures (kPa), Δ is the slope of vapor pressure curve (kPa °C⁻¹) and γ is the psychrometric constant (kPa °C⁻¹). More details are reported by Allen et al. (1998). Also, solar radiation (R_s) was computed using the following equation which was derived for the Bajgah area by Malek (1979):

$$R_s = (0.31 + 0.55 \frac{n}{N})R_a \tag{4}$$

where R_s is the solar radiation (MJ m⁻² d⁻¹), R_a is the extraterrestrial radiation (MJ m⁻² d⁻¹), n is the actual duration of sunshine (hour). and N is the maximum possible duration of sunshine or daylight hours (hour). The Hargreaves (Hargreaves and Samani, 1985) equation is as follows:

$$ET_o = 0.408 \times 0.0023 \times (T_{mean} + 17.8) \times (T_{max} - T_{min})^{0.5} \times R_a$$
(5)

Month	T _{min} (^o C)	$T_{max}(^{o}C)$	RH _{min} (%)	RH _{max} (%)	n (hour)	u (m s ⁻¹)
January	-3.63	10.70	32.48	87.91	5.72	1.10
February	-3.55	10.54	29.92	86.28	6.61	1.82
March	-0.01	13.98	25.81	84.21	6.79	1.66
April	3.32	18.50	24.79	81.23	7.83	1.60
May	7.04	24.32	20.68	78.80	9.31	1.45
June	9.83	30.59	17.76	69.19	11.16	1.28
July	13.41	33.53	19.67	64.13	10.65	1.16
August	13.92	33.31	20.80	65.76	10.30	1.07
September	9.65	31.15	20.54	70.79	10.22	1.05
October	4.55	26.07	21.33	76.33	9.06	0.99
November	0.43	19.83	24.73	81.27	7.84	0.98
December	-2.05	13.64	30.55	84.42	5.98	1.08

Table 1- The mean monthly weather data in the Bajgah area (1986-2002).

where ET_{o} is the reference crop potential evapotranspiration (mm per day), T_{mean} , T_{max} and T_{min} are the mean, maximum and minimum air temperatures (°C), respectively, and R_a has been previously defined. Also, 0.408 is for converting MJ m⁻² d⁻¹ to mm per day (Allen et al., 1998).

Results and Discussion

The monthly ET_o rates (mm per day) were calculated with Penman-FAO, Penman-Monteith and Hargreaves equations by using 17 years data (1986-2002). The values of mean monthly ET_o obtained by different methods are shown in Figure 1. The results indicated that the Penman-Monteith and Hargreaves equations tend to underestimate the monthly ET_{o} for all months compared with the Penman-FAO method. But their results are similar to some extent. Table 2 shows the frequency and percentage of monthly ET_{o} rates (mm per day) calculated with different methods. The results indicated that the most frequent estimated values of monthly ET_{o} rate through 204 months (17 years) occurred between 3-4, 6-7 and 1-2 mm per day for Penman-FAO, Penman-Monteith and Hargreaves equations, respectively. Also, this Table shows that the monthly ET_{o} rates estimated with Penman-Monteith and Hargreaves equations are lower than 9 mm per day, but the ones estimated with Penman-FAO equation are less than 13 mm per day during 1986-2002.

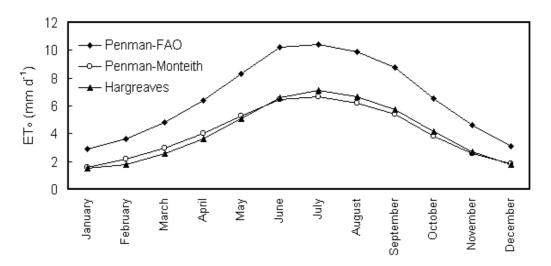


Fig. 1- The estimation of mean monthly ET_o rate for different methods.

Penman- FAO		Penman- Monteith		Hargreaves		
$\mathrm{ET}_{\mathrm{o}}(\mathrm{mm}\mathrm{d}^{-1})$	Frequency	Cumulative percentage	Frequency	Cumulative percentage	Frequency	Cumulative percentage
1	0	0.0	0	0.0	0	0.0
2	1	0.5	38	18.6	47	23.0
3	15	7.8	39	37.7	37	41.2
4	35	25.0	31	52.9	21	51.5
5	28	38.7	19	62.3	21	61.8
6	9	43.1	31	77.5	26	74.5
7	29	57.4	43	98.5	37	92.6
8	10	62.3	3	100.0	15	100.0
9	19	71.6	0	100.0	0	100.0
10	25	83.8	0	100.0	0	100.0
11	31	99.0	0	100.0	0	100.0
12	2	100.0	0	100.0	0	100.0

Table 2- The frequency and percentage of different values of ET₀ with different methods.

The ratios of monthly ET_o for different methods were calculated for each month of all years as S = Y / X or Y = S X, where S is the slope of the regression line between the monthly ET_o of the correlated methods (the regression lines are forced through the origin).

To calibrate the Penman-Monteith equation based on Penman-FAO equation for the Bajgah area, Y was considered as ET_o rate obtained by Penman-FAO and X was considered as ET_o rate obtained by Penman-Monteith. The monthly and annual average slope of calibration line is shown in Table 3. The results showed that the values of S varied between 1.562 for July to 1.836 for January. So, for using the Penman-Monteith equation for the Bajgah area, these coefficients for different months should be applied, separately, or the average calibration coefficient equal to 1.603 should be applied for all months in a year. Also, Dehghani-Sanij et al. (2004) showed that the Penman-Monteith equation is the best method for monthly ET_o estimation for Karaj (a semi-arid region in I. R. of Iran with mean annual rainfall of 240 mm). They estimated annual ET_o based on Penman-FAO and Penman-Monteith equations for Karaj (west of Tehran) in 1993 equal to 1641 and 1435 mm, respectively, and 1726 and 1491 mm for 1994, respectively. The ratio of annual ET_o of Penman-FAO to Penman-Monteith equation for these years is therefore estimated to be equal to 1.144 and 1.158, respectively. Therefore, similar results were obtained in Karaj for annual ET_o compared with monthly and annual ET_o in the Bajgah area.

Month	S	n	R^2
January	1.836	17	0.843
February	1.643	17	0.712
March	1.618	17	0.933
April	1.590	17	0.952
May	1.575	17	0.953
June	1.580	17	0.849
July	1.562	17	0.762
August	1.587	17	0.988
September	1.627	17	0.787
October	1.707	17	0.977
November	1.802	17	0.655
December	1.824	17	0.920
All months	1.603	204	0.973

Table 3- The ratio between monthly ET₀ of Penman-FAO to Penman-Monteith equation.

To calibrate the Hargreaves equation based on Penman-FAO equation for the Bajgah area, similar analysis was used. The results for each month of the year and for all months are shown in Table 4. The results showed that the values of S for Hargreaves equation varied between 1.466 for July to 2.003 for February. So, for using the Hargreaves equation in the Bajgah area, these coefficients for different months should be applied, separately, or an average calibration coefficient equal to 1.562 should be applied for all months of a year. If the value of S for each month of year multiplied by the value of 0.0023, the calibration coefficient (C_H) of the Hargreaves equation for each month is obtained. The values of C_H varied between 0.0034 for July and August to 0.0046 for February, and the average value of C_H is 0.0036 for all months of year. So, for using the Hargreaves equation in the Bajgah area, the new C_H values for each month should be applied instead of 0.0023. These results showed that the calibration coefficient (C_H) of the Hargreaves equation for each month, to some extent, is higher than 0.0023 which resulted in a lower estimation of monthly ET_o compared with Penman-FAO equation. Martinez-Cob and Tejero-Juste (2004) showed that the calibration coefficient (C_H) of the Hargreaves equation is 0.0023 (no changes to common situation) for windy locations (monthly mean wind speeds above 2 per Sec. are frequent), and 0.0020 for non-windy locations (monthly mean wind speeds below 2 m s⁻¹ are frequent) under the semi-arid conditions of the middle Ebro River Valley (NE Spain), based on Penman-Monteith equation.

The values of C_H were determined for different months in the Bajgah area based on the Penman-Monteith equation (Table 5). The results showed that the C_H values varied between 0.0021 for August and October to 0.0028 for February, and its average value for all months of year is 0.0022.

Table 4- The ratio between monthly ET₀ of Penman-FAO to Hargreaves equation and the modified coefficient of Hargreaves equation, Cm.

Hargreaves equation, C _H .					
Month	S	C _H	n	\mathbb{R}^2	
January	1.906	0.0044	17	0.618	
February	2.003	0.0046	17	0.572	
March	1.873	0.0043	17	0.932	
April	1.749	0.0040	17	0.575	
May	1.637	0.0038	17	0.689	
June	1.544	0.0036	17	0.638	
July	1.466	0.0034	17	0.974	
August	1.482	0.0034	17	0.962	
September	1.522	0.0035	17	0.950	
October	1.568	0.0036	17	0.766	
November	1.692	0.0039	17	0.575	
December	1.778	0.0041	17	0.590	
All months	1.562	0.0036	204	0.949	

Table 5- The ratio between monthly ET₀ of Penman-Monteith to Hargreaves equation and the modified coefficient of Hargreaves equation, C₄₁.

coefficient of Hargreaves equation, C _H .					
Month	S	C _H	n	\mathbf{R}^2	
January	1.035	0.0024	17	0.882	
February	1.198	0.0028	17	0.739	
March	1.158	0.0027	17	0.927	
April	1.100	0.0025	17	0.641	
May	1.040	0.0024	17	0.822	
June	0.978	0.0022	17	0.856	
July	0.939	0.0022	17	0.984	
August	0.934	0.0021	17	0.985	
September	0.935	0.0022	17	0.963	
October	0.918	0.0021	17	0.587	
November	0.938	0.0022	17	0.954	
December	0.993	0.0023	17	0.859	
All months	0.973	0.0022	204	0.961	

By considering the mean monthly wind speeds in the Bajgah area (Table 1), it is known that this area is nonwindy throughout the year. So, according to the results that obtained by Martinez-Cob and Tejero-Juste (2004), the C_H value of 0.0020 should be used instead of 0.0023, while it was obtained as 0.0022 instead of 0.0023 for all months of the year in the Bajgah area. But, according to the Penman-FAO equation, the $C_{\rm H}$ value should be 0.0036 instead of 0.0023 in the Bajgah area in Hargreaves equation. Also, Dehghani-Sanij et al. (2004) obtained annual ET_o for Karaj in years 1993 and 1994 based on Hargreaves equations equal to 1255 and 1316 mm, respectively. Accordingly, the ratios of annual ET_o of Penman-FAO to Hargreaves equations for these years were 1.308 and 1.312, respectively, and the ratios of annual ETo of Penman-Monteith to Hargreaves equations for these years were 1.143 and 1.133, respectively. Therefore, the values of C_H were equation, and 0.0026 for 1993 and 1994 based on Penman-Monteith equation. The results indicated that C_H value in the Bajgah area is greater than that for Karaj based on Penman-FAO equation, but its value based on the Penman-Monteith equation in the Bajgah area is less than that for Karaj.

Conclusions

By considering the Penman-FAO equation as base method for estimation of monthly ETo, the Penman-Monteith and Hargreaves equations were calibrated in the Bajgah area for each month of year ,separately, by using 17 years of weather data. The results showed that the Penman-Monteith and Hargreaves equations tend to underestimate ET_o compared with Penman-FAO method for all years of data, but the amounts of ET_o for Penman-Monteith and Hargreaves equations are close to each other to some extent. The results of calibrating Penman-Monteith equation showed that the values of S (ratio of ET_o for Penman-FAO to that for Penman-Monteith) varied between 1.562 for July to 1.836 for January, and 1.603 for all months of the year. Also, the results of calibrating Hargreaves equation showed that its coefficient ($C_{\rm H} = 0.0023$) should be adjusted for the study area for each month. The adjusted coefficient varied between 0.0034 for July and August to 0.0046 for February, and 0.0036 for all months of the year.

References

- Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. (1998), "Crop evapotranspiration". *Irrigation and Drainage* Paper No. 56, FAO, United Nations, Rome, Italy. 310p.
- Dehghani-Sanij, H., T. Yamamoto, and V. Rasiah. (2004), "Assessment of evapotranspiration estimation models for use in semi-arid environments". *Agric. Water Manage.* 64, pp. 91-106.
- Doorenbos, J., and W. O. Pruitt. (1977), "Crop water requirements". *Irrigation and Drainage* Paper No. 24, FAO, United Nations, Rome, Italy. 144p.
- Fooladmand, H. R., and A. R. Sepaskhah. (2004), "Economic analysis for the production of four grape cultivars using microcatchment water harvesting systems in Iran". J. Arid Environ. 58, pp. 525-533.
- Hanson, B., L. Schwankl, and A. Fulton. (1999), "Scheduling Irrigation: When and How Much Water to Apply". *Department of Land, Air and Water Resources*, University of California, Davis. 202p.

- 0.0030 for 1993 and 1994 based on Penman-FAO Hargreaves, G. L., and Z. A. Samani. (1985), "Reference crop evapotranspiration from temperature". *Appl. Engin. Agric.* 1(2), pp. 96-99.
- Malek, E. (1979), "Determination of the constants for the global radiation equation at Bajgah, Iran". *Agric. Meteorol.* 20, pp. 233-235.
- Malek, E. (1982), "Methods of evaluating water balance and determining climatic type: an example for Bajgah". Iran. J. *Agric. Sci.* 12, pp. 57-72 (in Farsi).
- Malek, E. (1984), "Agroclimatic characteristics of the Bajgah area, Fars Province of Iran". *Iran Agric. Res.* 3, pp. 65-74.
- Martinez-Cob, A., and M. Tejero-Juste. (2004), "A wind-based qualitative calibration of the Hargreaves ET_o estimation equation in semiarid regions". *Agric. Water Manage*. 64, pp. 251-264.
- Sadeghi, A. R., A. A. Kamgar-Haghighi, A. R. Sepaskhah, D. Khalili, and Sh. Zand-Parsa. (2002), "Regional classification for dryland agriculture in southern Iran". J. Arid Environ. 50, pp. 333-341.
- Sepaskhah, A. R (1999), "A review on methods for calculating crop evapotranspiration". Proceeding of the 7th International Seminar on Irrigation and Evaporation Reduction, Shahid Bahonar University, Kerman, I. R. of Iran, pp.1-10 (in Farsi).
- Sepaskhah, A. R., and H. R. Fooladmand. (2004), "A computer model for design of microcatchment water harvesting systems for rain-fed vineyard". *Agric. Water Manage*. 64, pp. 213-232.
- Xu, C. Y., and V. P. Singh. (2002), "Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland". *Water Res. Manage*. 16, pp.197-219.
- Zand-Parsa, Sh., and A. R. Sepaskhah. (1996), "Introducing a simple methodology for frequency analysis of reference crop potential evapotranspiration in Iran". Proceeding of the 6th International Seminar on Irrigation and Evaporation Reduction, Shahid Bahonar University, Kerman, I. R. of Iran, pp. 38-55 (in Farsi).
- Zand-Parsa, Sh., A. R. Sepaskhah, and T. Honar. (1996), "Selection of the appropriate distribution function for frequency analysis of reference crop potential evapotranspiration in Iran". Proceeding of the 6th International Seminar on Irrigation and Evaporation Reduction, Shahid Bahonar University, Kerman, I. R. of Iran, pp. 134-139 (in Farsi).

Submitted: April 14, 2004 Accepted: October 2, 2004