مدل عددی انتقال وتخلیه آلاینده ها از آبخوان ساحلی به دریا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار/ دانشکده مهندسی عمران، دانشگاه صنعتی شریف

2 کارشناس ارشد/ دانشکده مهندسی عمران، دانشگاه صنعتی شریف

چکیده

شبیه‌سازی انتقال و تخلیه آلاینده‌ها از آبخوانهای ساحلی به دریا به علت شرایط مرزی در سمت دریا پیچیده می‌باشد. مدل ModSharp که در این تحقیق توسعه داده شده است. مدلی قدرتمند و کارا برای مدل‏سازی انتقال آلاینده‌ها در آبخوانهای ساحلی در مقیاس بزرگ می‌باشد. این مدل معادله همرفتی-پراکندگی را به روش مشخصه‌ها حل می‌نماید. دقت و اعتبار مدل با حل چند مثال که جوابهای تحلیلی و عددی معلوم دارند، در زمینه پیشروی آب شور و انتقال آلاینده‌ها کنترل گردید. در ادامه اثر پیشروی آب شور بر انتقال و تخلیه آلاینده‌ها در آبخوانهای ساحلی شبیه‌سازی شد. نتایج نشان می‌دهد که پیش‏روی آب شور اثر قابل توجهی بر انتقال آلاینده در آبخوانهای ساحلی دارد. همچنین صرف‏نظر کردن از شرایط مرزی در سمت دریا به تخمینی کوچکتر از نرخ تخلیه آلاینده‌ها به دریا می‌انجامد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical model of Transport and Contaminant Discharge from Coastal Aquifers into Seaward

نویسندگان [English]

  • B Ataie- Ashtiani 1
  • H. R Hosseinabadi 2
  • E Fatemi 2
1 Associate Professor, Dept. of Civil Engineering, Sharif University of Technology
2 M.Sc., Water Resources Engineering, School of Civil Engineering, Sharif University of Technology
چکیده [English]

Transport and contaminant discharge Simulation from coastal aquifers into seaward is complex due to boundary condition in seaward. In this research, ModSharp, a numerical model has been developed that is able to simulate contaminants transport in large scale in coastal aquifers. This model solves Advection-Dispersion equation with method of characteristics. The accuracy of the model was evaluated for several idealized problems for which analytical and numerical solution, in field of seawater intrusion and contaminant transport could be obtained. Effect of seawater intrusion on contaminants transport in coastal aquifers was simulated. Simulation results show that seawater intrusion has significant effect on solute transport in coastal aquifers. Neglecting the influence of seawater intrusion leads to a lower estimate for rate of contaminant discharge to sea.

کلیدواژه‌ها [English]

  • Contaminant Discharge
  • Seawater Intrusion
  • numerical simulation
  • Coastal Aquifer
  • Characteristics Method
حسین‌آبادی، حمیدرضا، (1381)، مدل‏سازی عددی انتقال و تخلیه آلاینده‌ها از آبخوانهای ساحلی به دریا، پایان‌نامه کارشناسی ارشد سازه‌های هیدرولیکی، دانشکده مهندسی عمران، دانشگاه صنعتی شریف، تهران.
فاطمی، سید احسان، (1384)، شبیه‌سازی تخلیه آلاینده‌ها به مناطق ساحلی از آبخوان‌های ساحلی در مقیاس منطقه‌ای، پایان‌نامه کارشناسی ارشد آب، دانشکده مهندسی عمران، دانشگاه صنعتی شریف، تهران.
Aris, R. (1962), Vectors, Basic Equations of Fluid Mechanics. Prentice-Hall, Cliffs, N.J., 286 p.
Ataie-Ashtiani, B., Volker, R. E. and Lockington, D. A. (1996b) “Nomerical and Experimental Study of Seepage in Unconfined Aquifers with a Periodic Boundary Condition”, Journal of Hydrology, 222:1-4, pp. 165-184.
Ataie-Ashtiani, B., Volker, R. E. and Lockington, D. A. (2001) “Tidal Effects on Groundwater dynamics in Unconfined Aquifers”, Journal of Hydrology, 15: 4, pp. 655-669.
Ataie-Ashtiani, B., Volker, R. E. and Lockington, D. A. (2002) “Contaminant Transport in Coastal Aquifers Influenced by Tide”, Australian Civil Engineering Transactions, Vol. CE43, pp. 1-11.
Ataie-Ashtiani, B., Volker, R. E. and Lockington, D. A. (1999a) “Tidal Effects on Seawater Intrusion in Unconfined Aquifers”, J. of Hydrology, 216 (1-2), pp. 17-31.
Bear J. and Verruijt, A. (1987), Modeling Groundwater Flow and Pollution, D. Reidel Publishing Company, 414p.
Church, T. M. (1996), An Underground Route for the Water Cycle, Nature, 380, pp. 579-580.
Essaid, H. I. (1987), “A Quasi Three Dimensional Finite Difference Model for the Simulation of Fresh Water and Salt Water Flow in a Coastal Aquifer System”, Ph.D. Dissertation, Stanford Univ., Stanford, Calif.
Johannes, R. E. (1980), The Ecological Significance of the Submarine Discharge of Groundwater. Mar. Ecol. Prog. Ser., 3. pp. 365-373.
Konikow, L. F. and Grove, D. B. (1978), “Computer Model of Two-Dimensional Solute Transport and Dispersion in Groundwater”: U.S. Geological survey Techniques of Water-Resources Investigations, Book 7, Chapter C2, 90 p.
Li, L., Barry, D. A., Stagnitty, F. and Parlange, J. Y. (1999), “Submarine Ground Water Discharge and Associated Chemical Input to a Coastal Sea”, Water Resources Research., 35 (11). pp. 3253-3259.
Mercer, J. W., Larson, S. P. and Faust, C. R. (1980), “Simulation of Salt-water Interface Motion”, Ground Water, 18(4), pp. 374-385.
Moore, W. S. (1996), Large Ground Water Inputs to Coastal Waters Revealed by Ra226 Enrichment, Nature, 380, pp. 612-614.
Nielsen, P. and Dunn, S. L. (1998), Manometer Tubes for Coastal Hydrodynamics Investigations, Coastal Eng., 35, pp. 73-84.
Reilly, Th. E. and Goodman, A. S. (1985), Quantitative Analysis of Saltwater Fresh Water Relationships in Groundwater Systems a Historical Perspective, Journal of Hydrology, 80, pp. 125-160.
Sutcliff, W. H. (1972), “Some Relations of Land Drainage, Nutrient and Particulate Material and Fish Catches in Two Eastern Canadian bays”, Can. J. Fish. Aquat. Sci., 29, pp. 357-362.
Uchiyama, Y., Nadaoka, K., Rolke, P., Adachi, K. and Yagi, H. (2000), Submarine Ground Water Discharge into the Sea and Associated Nutrient Transport in a Sandy Beach, Water Resources Research, 36 (6), pp. 1467-1479.