اثر تغییر اقلیم بر وضعیت خشکسالی تحت سناریوهای SSP3 و SSP5 با استفاده از روش فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، گروه علوم و مهندسی آب، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران.

2 دانشیار گروه علوم و مهندسی آب، دانشگاه بین‌المللی امام خمینی (ره)، قزوین، ایران.

چکیده

با توجه به اهمیت شناخت روند و تغییرات خشکسالی تحت سناریوهای اقلیمی در آینده، هدف از پژوهش حاضر بررسی تغییرات ویژگی‌های خشکسالی همچون درصد فراوانی دوره­‌های خشک و تر و روند تغییرات خشکسالی براساس شاخص خشکسالی فازی (در مقیاس‌های زمانی 3، 6 و 12 ماهه) تحت سناریوهای SSP 3_7.0 و SSP 5_8.5 از جدیدترین گزارش اقلیمی (CMIP6) است. لازم بذکر است که در تحقیق حاضر از داده‌­های 6 ایستگاه سینوپتیک واقع در حوضه آبخیز کارون طی دوره 2014-1991 به عنوان دوره پایه استفاده شده است و پایش شرایط خشکسالی طی سه دوره آتی شامل 2045-2020، 2072-2046 و 2099-2073 انجام شده است. نتایج حاکی از آن است که بهترین عملکرد داده‌­های اقلیمی در تخمین شاخص خشکسالی فازی در مقیاس­‌های زمانی 3 و 6 ماهه است، بطوریکه متوسط شاخص همبستگی در این دو مقیاس بیش از 0/90 و شاخص RMSE به 0/14 محدود شده است. علاوه بر این، پایش شرایط خشکسالی حوضه تحت سناریوهای اقلیمی در دوره‌­های آتی حاکی از وجود روند افزایشی در سطح اطمینان 95 درصد، افزایش دوره­‌های خشک و کاهش دوره‌­های تر است. براساس نتایج، مقدار آماره آزمون ناپارامتری من­کندال تحت سناریوهای SSP 3_7.0 و SSP 5_8.5 به ترتیب طی دوره 2072-2046 و 2099-2073 بیش از 1/64 برآورد شده است. بطورکلی نتایج نشان داد که مناطق شمالی، شمال­غرب و غرب حوضه آبریز کارون بیشتر در معرض شرایط خشک قرار خواهند داشت. لذا با توجه به روند افزایش شاخص خشکسالی فازی به سمت شرایط خشک در ایستگاه­‌های بروجرد، صفی‌­آباد و کوهرنگ، خطر خشکسالی طی دوره­‌های 2073-2099 و 2072-2046 در این ایستگاه­‌ها بیشتر است و ضروری است که برای مدیریت منابع آب و کشاورزی در این مناطق برنامه­‌ریزی و اقدام جدی انجام شود. نتایج این تحقیق می­‌تواند در راستای اعمال سیاست­گذاری­‌ها و برنامه‌­ریزی برای مدیریت پایدار منابع آب تحت تأثیر تغییر اقلیم مفید واقع شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effects of Climate Change on Drought Conditions Using Fuzzy Logic Under SSP3 and SSP5 Scenarios

نویسندگان [English]

  • Sakine Koohi 1
  • Asghar Azizian 2
  • hamed mazandarani zadeh 2
1 - Ph.D Student in Water Resources Engineering, Water Engineering Dept, Imam Khomeini International University, Qazvin, Iran.
2 Associate Professor, Water engineering Department, Imam Khomeini International University, Qazvin, Iran.
چکیده [English]

Investigation of future drought trends and variations under climate change scenarios plays a key role in developing management strategies for minimizing drought's negative societal and economic impacts. Therefore, this study aimed to assess changes in drought characteristics such as the frequency of dry and wet periods, and the trend of drought index based on fuzzy drought index (at time scales of 3, 6, and 12 months) under SSP3 and SSP5 scenarios of CMIP6 during the 21st century. The data of 6 synoptic stations in Karoon River Basin during 1991-2014 have been used in this study. Assessing the reliability of climate models for drought monitoring with fuzzy drought index in the base period showed that the highest correlation coefficient (CC>0.90) and the lowest root mean square error (RMSE<0.14) are found at 3 and 6 month time-scales. In addition, monitoring the drought conditions of the basin under climatic scenarios in future periods revealed an increasing trend (at the 95% confidence level) and the wetness frequency in the northern, northwestern, and western of the basin is more likely to decrease. Over the periods 2046–2072 and 2073-2099 the result of the non-parametric Mann-Kendall test for the scenarios of SSP3_7.0 and SSP5_8.5 was 1.64. Therefore, due to the increasing trend of fuzzy drought index changes to dry conditions in Boroujerd, Safiabad, and Kuhrang stations, the risk of drought during the periods 2073-2099 and 2046-2072 are higher. Accordingly, water managers and farmers should adopt strategies in order to reduce the damages. The results of this research can be valuable in adopting policies and planning for sustainable management of water resources affected by climate change.

کلیدواژه‌ها [English]

  • Climate Change
  • Drought Monitoring
  • Fuzzy Drought Index
  • SSP Scenarios
Ababaei B, Ramezani Etedali H (2019) Investigating climate change over 1957–2016 in an arid environment with three drought indexes. Theoretical and Applied Climatology 137(3–4):2977–2992
Ansari S, Dehban H, Zareian M, Farokhnia A (2022) Investigation of temperature and precipitation changes in the Iran’s basins in the next 20 years based on the output of CMIP6 model. Iranian Water Research Journal 16(1):11-24 (In Persian)
Aziz A, Umar M, Mansha M, Khan M, Javed M, Gao H, Abdullah S (2018) Assessment of drought donditions using HJ-1A/1B Data: A case study of Potohar Region, Pakistan. Geomatics, Natural Hazards and Risk 9(1):1019–1036
Bazrafshan O, Mahmudzadeh F, Bazrafshan J (2017) Evaluation of temporal trends of the drought indices SPI and SPEI in the Southern coast of Iran. Desert Management 4(8):54–69 (In Persian)
Bower E, Meneghetti L, O’Connor K (2015) Global estimates 2015: People displaced by disasters. Internal Displacement Monitoring Centre, Norwegian Refugee Council
Dubrovsky M, Svoboda M D, Trnka M, Hayes M J, Wilhite D A, Zalud Z, Hlavinka P (2009) Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theoretical and Applied Climatology 96(1-2):155–171
Haile G G, Tang Q, Hosseini Moghari S M, Liu X, Gebremicael T G, Leng G, Yun X (2020) Projected impacts of climate change on drought patterns over East Africa. Earth’s Future 8(7):1–23
Hajima T, Kawamiya M, Watanabe M, Kato E, Tachiiri K, Sugiyama M, Watanabe S, Okajima H, Ito A (2014) Modeling in Earth system science up to and beyond IPCC AR5. Progress in Earth and Planetary Science 1(29)
Hashmi M Z, Shamseldin A Y, Melville B W (2011) Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stochastic Environmental Research and Risk Assessment 25:475–484
Heshmati S, Ramezani Etedali H (2021) Drought forecasting for future periods using LARS-WG model: The Case Study of Kermanshah City. Town and Country Planning 13(2):647-669
Hosseinabadi S, Yaghoobzadeh M, Amirabadizadeh M, Foroozanmehr M (2020) Meteorological drought assessment in future periods by using of the data of the fifth report of climate change (Case study: Zabol and Shiraz Cities). Journal of Arid Regions Geographics Studies 10(40):78–87 (In Persian)
Huang S, Huang Q, Chang J, Zhu Y, Leng G, Xing L (2015) Drought structure based on a nonparametric multivariate standardized drought index across the Yellow River basin, China. Journal of Hydrology 530(November):127–136
IPCC (2013) Climate change 2013: The physical science basis IPCC working group I contribution to AR5. Retrieved October 18, 2018
Kendall M G (1975) Rank Correlation Methods. (4th Edition), Charles Griffin, London, U. K., 202p  
Khan J U, Islam A K M S, Das M K, Mohammed K, Bala S K, Islam G M T (2020) Future changes in meteorological drought characteristics over Bangladesh projected by the CMIP5 multi-model ensemble. Climatic Change 162(2):667–685
Koohi S, Azizian A, Brocca L (2021) Spatiotemporal drought monitoring using bottom-up precipitation dataset (SM2RAIN-ASCAT) over different regions of Iran. Science of the Total Environment 779(146535)
Li J, Miao C, Wei W, Zhang G, Hua L, Chen Y, Wang X (2021) Evaluation of CMIP6 global climate models for simulating land surface energy and water fluxes during 1979–2014. Journal of Advances in Modeling Earth Systems 13(6):1–32
Ma Z, Sun P, Zhang Q, Zou Y, Lv Y, Li H, Chen D (2022) The characteristics and evaluation of future droughts across china through the CMIP6 multi-model ensemble. Remote Sensing 14(5):1–23
Mann H B (1945) Nonparametric tests against trend. Econometrica 13(3):245–259
McKee T B, Doesken N J, Kleist J (1993) The relationship of drought frequency and duration to time scales. Proceedings of the Eighth Conference on Applied Climatology 179–184
Mirgol B, Nazari M, Etedali H R, Zamanian K (2021) Past and future drought trends, duration, and frequency in the semi-arid Urmia Lake Basin under a changing climate. Meteorological Applications 28(4):1–19
Modarresi Rad A, AghaKouchak A, Navari M, Sadegh M (2021) Progress, challenges, and opportunities in remote sensing of drought. In: Global Drought and Flood Observation, Modeling, and Prediction. American Geophysical Union, 352p
Montaseri M, Nourjou A, Behmanesh J, Akbari M (2018) Investigation of heteorological drought in southern basins of Urmia lake (Case study: Zarrineh rud and Simeneh rud). Iranian Journal of ECO Hydrology 5(1):189–202 (In Persian)
NikbakhtShahbazi A (2017) Assessment of climate change impact on precipitation and temperature variation in watershed of Karoon 3 Dam. Journal of Environment and Water Engineering 3(2):133–143 (In Persian)
Norozi E, Rostami N, Jahangir M (2018) Prediction of drought condition during 2018-2037 period under Climate Change Approach (Case study: Ilam and Dehloran Stations). Iranian Journal of ECO Hydrology 5(3):977–991 (In Persian)
O’Neill B C, Kriegler E, Ebi K L, Kemp-Benedict E, Riahi K, Rothman D S, Solecki W (2017) The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change 42(January):169–180
Rahimi J, Ebrahimpour M, Khalili A (2013) Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoretical and Applied Climatology 112(3-4):409–418
Rajsekhar D, Singh V P, Mishra A K (2015) Multivariate drought index: An information theory based approach for integrated drought assessment. Journal of Hydrology 526(July):164–182
Rogelj J, Popp A, Calvin K V, Luderer G, Emmerling J, Gernaat D, Tavoni M (2018) Scenarios towards limiting global mean temperature increase below 1.5 °c. Nature Climate Change 8(4):325–332
Shelton M (2018) Hydroclimatology perspectives and applications. Cambridge University Press, 438p
Sobhani B, Gafarigilandeh A, Goldost A (2015) Drought monitoring in Ardabil province by means of SEPI fuzzy index developed based on the fuzzy logic. Journal of Applied Researches in Geographical 15(36):51–72 (In Persian)
Sunyer M A, Hundecha Y, Lawrence D, Madsen H, Willems P, Martinkova M, Yücel I (2015) Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrology and Earth System Sciences 19(4):1827–1847
Swain S, Hayhoe K (2015) CMIP5 projected changes in spring and summer drought and wet conditions over North America. Climate Dynamics 44(9–10):2737–2750
Thornthwaite C W (1948) An Approach toward a rational classification of climate. Geographical Review 38(1):55–94
Wilhite D A (2000) Drought as a natural hazard: Concepts and definitions. In: Drought: A Global Assessment, Natural Hazards and Disasters Series, Routledge Publishers, U. K., 752p
Wilhite D A, Sivakumar M V K, Pulwarty R (2014) Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes 3(March 2013):4–13
WMO (1983) Guide to climatological practices, (2nd edition). WMO–No. 100, World Meteorological Organization, Geneva
Xu K, Wu C, Zhang C, Hu B X (2021) Uncertainty assessment of drought characteristics projections in humid subtropical basins in China based on multiple CMIP5 models and different index definitions. Journal of Hydrology 600 (126502)
Zarrin A, Dadashi Roudbari A A (2021) Projected consecutive dry and wet days in Iran based on CMIP6 bias‐corrected multi-model ensemble. Earth and Space Physics 47(3):561–578 (In Persian)
Zarrin A, Dadashi Roudbari A A (2020) Projection the long-term outlook Iran future temperature based on the output of the coupled model intercomparison project phase 6 (CMIP6). Earth and Space Physics 46(3):583–602 (In Persian)