مروری بر تکامل مفاهیم آبدهی آبخوان و نقش این مفاهیم در مدیریت آب‌زیرزمینی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران

2 استادیار گروه اکولوژی، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

3 استاد گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران

4 استاد گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران.

چکیده

پایایی منابع کره زمین حیاتی‌‏ترین موضوع روز است که آب ‏زیرزمینی یکی از مهمترین این منابع است. بهره‏‌برداری پایا از این منبع، از ضروریات اجتناب‌ناپذیر برای دستیابی به توسعه پایا در ایران محسوب می‏‌شود. اما اضافه برداشت و غفلت از توجه به مفاهیم بنیادی برای بهره‏‌برداری پایا از آب‏ زیرزمینی در بسیاری از حوضه‌های آبریز، نابودی اکوسیستم‏‌های وابسته به آب ‏زیرزمینی و دیگر خسارات جبران‌‏ناپذیر را در پی داشته است. با توجه به ضرورت تعریف مفاهیم بنیادی در مدیریت آب‌زیرزمینی برای تعیین حداکثر عمق کف‎شکنی چاه‌ها، در این مقاله پراستنادترین مفاهیم طی قرن اخیر از مقالات مختلف استخراج و مورد تجزیه و تحلیل قرار گرفته است. پس از بررسی سیر تاریخی تغییر در این مفاهیم بنیادی، این مفاهیم برای استفاده متخصصان طبقه‌بندی شده است. نتایج تجزیه و تحلیل‌ها نشان می‌دهد که سه مفهوم بنیادی (آبدهی مطمئن، آبدهی استخراجی و آبدهی پایا) بیشتر مورد توجه قرار گرفته و دیگر مفاهیم حول این سه مفهوم هستند. به بیان دیگر این تحول در پاسخ به این سؤال که حداکثر چه مقدار از ذخیره قابل‌بهره‌برداری آبخوان قابل پمپاژ است توسعه یافته‌اند. مرور سیر تحول در رویکردهای پمپاژ آب از آب‌زیرزمینی نشان می‌دهد که تعیین حداکثر پمپاژ، نیازمند تبیین معیارهایی معقول و مطلوب مبتنی بر این مفاهیم می‌باشد. در انتهای مقاله، در بخش فرا تحلیل و جمع‌‎بندی، جایگاه رویکرد جاری (اجرایی و علمی) در ایران با تحول مدیریت آب‌زیرزمینی در دنیا (مرور شده در این مقاله)، مقایسه شده است. این مقایسه نشانگر وجود شکاف عمیقی میان بهره‌برداری پایا با شرایط موجود بهره‌برداری از آب‌زیرزمینی در ایران است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on the Evolution of Aquifer Yield Concepts and the Role of these Concepts in Groundwater Management

نویسندگان [English]

  • Hashem Derakhshan 1
  • Ameneh Mianabadi 2
  • Abolfazl Mosaedi 3
  • kamran Davary 4
1 Ph.D. Student of Irrigation and Drainage, Department of Water Science and Engineering, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Assistant Professor, Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
3 Professor, Department of Water Science and Engineering, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
4 Professor, Department of Water Science and Engineering, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

The sustainability of earth’s crucial resources, such as groundwater, is a critical issue. Physically sustainable groundwater use is an unavoidable necessity for sustainable development in Iran. In many watersheds, overexploitation and neglecting the reasonable criteria for sustainable use of groundwater have led to the destruction of groundwater-dependent ecosystems as well as many other inevitable losses. Considering the necessity of defining fundamental concepts in groundwater management to determine the maximum admissible depth of wells, this paper assessed the most cited concepts from various published articles during the last century. After examining the historical changes in these fundamental concepts, the concepts have been categorized for the use of water resources experts. We found that three basic concepts of sustainable yield, safe yield, and Mining Yield are the most commonly used and the others are defined according to these three. In other words, the evolution occured in response to the question of how much water can maximally be extracted from the aquifer. A review of the evolution of approaches to groundwater pumping showed that determining the maximum amount of pumping requires the reasonable and desirable criteria based on the aquifer yield concepts. In the meta-analysis and summary section, the paper compared the current (executive and scientific) approach in Iran with the evolution of groundwater management in the world (reviewed in this article). This comparison indicated that there is a profound gap between sustainable groundwater exploitation and the current groundwater management conditions in Iran.

کلیدواژه‌ها [English]

  • Groundwater Sustainability
  • Sustainable Yield
  • Safe Yield
  • Mining Yield
  • Reasonable Indices
Aeschbach-Hertig W and Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience. Nature Publishing Group 5(12):853–861
Alipor A and Derakhshan H (2019) Strategies for achieve groundwater sustainable management. Strategic Studies of Public Policy, Center of Strategic Studies 8(29):261–275
Alley WM, Clark BR, Ely DM, and Faunt CC (2018) Groundwater development stress: Global-scale indices compared to regional modeling. Groundwater 56(2):266–275
Alley WM and Leake SA (2004) The journey from safe yield to sustainability. Groundwater. Wiley Online Library 42(1):12–16
Alley WM, Reilly TE, and Franke OL (1999) Sustainability of ground-water resources. US Department of the Interior, US Geological Survey
Archfield SA, Vogel RM, Steeves PA, Brandt SL, Weiskel PK, and Garabedian SP (2010) The Massachusetts sustainable-yield estimator: A decision-support tool to assess water availability at ungaged stream locations in Massachusetts. US Department of the Interior, US Geological Survey
Baguma A, Bizoza A, Carter R, Cavill S, Foster S, Foster T, Jobbins G, Hope R, Katuva J, and Koehler J (2017) Groundwater and poverty in sub-Saharan Africa. UPGro Working Paper. Skat Foundation
Bear J and Levin O (1967) The optimal yield of an aquifer. International Association of Scientific Hydrology. Bulletin 72:401–412
Bijani M, Moridi A, and Majdzadeh Tabatabaie MR (2017) Investigation of well deepening effects on aquifer yeild using numerical model. Iran-Water Resources Research 12(4):83–92
Bredehoeft JD (2002) The water budget myth revisited: Why hydrogeologists model. Groundwater 40(4):340–345
Bredehoeft JD and Alley WM (2014) Mining groundwater for sustained yield. The Bridge 44(1):33–41
Brown CM, Lund JR, Cai X, Reed PM, Zagona EA, Ostfeld A, Hall J, Characklis GW, Yu W, and Brekke L (2015) The future of water resources systems analysis: Toward a scientific framework for sustainable water management. Water Resources Research 51(8):6110–6124
Castilla‐Rho JC (2017) Groundwater modeling with stakeholders: Finding the complexity that matters. Groundwater 55(5):620–625
Chen J, Famigliett JS, Scanlon BR, and Rodell M (2016) Groundwater storage changes: Present status from GRACE observations. Surveys in Geophysics 37(2):397–417
Conkling H (1946) Utilization of ground-water storage in stream system development. Transactions of the American Society of Civil Engineers, American Society of Civil Engineers 111(1):275–305
Cuthbert MO, Gleeson T, Moosdorf N, Befus KM, Schneider A, Hartmann J, and Lehner B (2019) Global patterns and dynamics of climate–groundwater interactions. Nature Climate Change 2019 9:2. Nature Publishing Group 9(2):137–141
Davari K, Rashidi M, and Omranian Khorasni H (2019) The need to revise the law of equitable distribution of water in Iran. Public Policy. University of Tehran 5(3):253–269
Derakhshan H and Davary K (2019) Developing criteria, as key solution for sustainable groundwater withdrawal. Iran-Water Resources Research 14(5):483–489
Devlin JF and Sophocleous M (2005) The persistence of the water budget myth and its relationship to sustainability. Hydrogeology Journal 13(4):549–554
Domenico PA (1972) Concepts and models in groundwater hydrology. McGraw-Hill
DWR (2015) Groundwater sustainability program draft strategic Plan. California Department of Water Resources, Groundwater Sustainability Program DRAFT Strategic Plan
Elshall AS, Arik AD, El-Kadi AI, Pierce S, Ye M, Burnett KM, Wada CA, Bremer LL, and Chun G (2020) Groundwater sustainability: A review of the interactions between science and policy. Environmental Research Letters 15(9)
Faryabi M (2019) Determining the optimal depth of water wells in Kashan aquifer. Journal of Water Resources Engineering: (107-109) (In Persion)
Fishman R, Devineni N, and Raman S (2015) Can improved agricultural water use efficiency save India’s groundwater? Environmental Research Letters, IOP Publishing 10(8):84022
Freeze RA and Cherry JA (1979) Groundwater Prentice-Hall Inc. Eaglewood Cliffs, NJ
Gholami Z, Ibrahimian H, and Noory H (2017) Determining economic depth of agricultural well in sprinkler irrigated farms in Qazvin plain. Iranian Journal of Soil and Water Research, University of Tehran 48(2):441–449
Gleeson T, Alley WM, Allen DM, Sophocleous MA, Zhou Y, Taniguchi M, and VanderSteen J (2012) Towards sustainable groundwater use: Setting long‐term goals, backcasting, and managing adaptively. Groundwater 50(1):19–26
Gleeson T, Cuthbert M, Ferguson G, and Perrone D (2020a) Global groundwater sustainability, resources, and systems in the anthropocene. https://doi.org/10.1146/annurev-earth-071719-055251. Annual Reviews  48:431–463, Available at: https://www.annualreviews.org/doi/abs/10.1146/annurev-earth-071719-055251
Gleeson T, Cuthbert M, Ferguson G, and Perrone D (2020b) Global groundwater sustainability, resources, and systems in the anthropocene. Annual Review of Earth and Planetary Sciences, Annual Reviews Inc., 431–463
Gober P, Kirkwood CW, Balling RC, Ellis AW, and Deitrick S (2010) Water planning under climatic uncertainty in Phoenix: Why we need a new paradigm. Annals of the Association of American Geographers, Taylor & Francis 100(2):356–372
Gorelick SM and Zheng C (2015) Global change and the groundwater management challenge. Water Resources Research 51(5):3031–3051
Hata Y (1998) Review and evaluation of previous concepts and methods for the determination of extractable groundwater yield. Earth Science (Chikyu Kagaku), The Association for the Geological Collaboration in Japan 52(4):251–261
Kalf FRP and Woolley DR (2005) Applicability and methodology of determining sustainable yield in groundwater systems. Hydrogeology Journal 13(1):295–312
Kazmann RG (1956) “Safe Yield” in ground-water development, reality or illusion? Journal of the Irrigation and Drainage Division, American Society of Civil Engineers 82(3):1101–1103
Keeble BR (1988) The Brundtland report: “Our Common Future”. Medicine and War 4(1):17–25
Knüppe K, Pahl-Wostl C, and Vinke-de Kruijf J (2016) Sustainable groundwater management: A comparative study of local policy changes and ecosystem services in South Africa and Germany. Environmental Policy and Governance 26(1):59–72
Kretsinger Grabert V and Narasimhan TN (2006) California’s evolution toward integrated regional water management: A long-term view. Hydrogeology Journal 14(3):407–423
Langridge R and Daniels B (2017) Accounting for climate change and drought in implementing sustainable groundwater management. Water Resources Management 31(11):3287–3298
Lee CH (1915) The determination of safe yield of underground reservoirs of the closed-basin type. American Society of Civil Engineers XL(4)
Lijzen JPA, Otte P, and van Dreumel M (2014) Towards sustainable management of groundwater: Policy developments in The Netherlands. Science of The Total Environment 485–486(1):804–809
Llamas MR, Custodio E, De la Hera A, and Fornés JM (2015) Groundwater in Spain: Increasing role, evolution, present and future. Environmental Earth Sciences 73(6):2567–2578
Llamas MR and Martínez-Santos P (2005) Intensive groundwater use: Silent revolution and potential source of social conflicts. Journal of Water Resources Planning and Management 337–341
Alley M and Leake A (2004) The journey from safe yield to sustainability. Ground Water 42(1):12-16
Maimone M (2004) Defining and managing sustainable yield. Ground Water 42(6):809–814
Margat J, Foster S and Droubi A (2006) Concept and Importance of non-renewable resources. Non-Renewable Groundwater Resources, UNESCO Paris,, France 10:13
McCartney MP, Acreman MC, and Bergkamp G (2000) Freshwater ecosystem management and environmental security. Background paper to Vision for Water and Nature Workshop, San Jose (Costa Rica), 20–22
Mianabadi A, Davary K, Kolahi M, and Fisher J (2021a) Water/climate nexus environmental rural-urban migration and coping strategies. Journal of Environmental Planning and Management 1–25
Mianabadi A, Derakhshan H, Davary K, Hasheminia SM, and Hrachowitz M (2020) A novel idea for groundwater resource management during megadrought events. Water Resources Management 34(5):1743–1755
Mianabadi A, Hasheminia SM, Davary K, Derakhshan H, and Hrachowitz M (2021b) Estimating the aquifer’s renewable water to mitigate the challenges of upcoming megadrought events. Water Resources Management 35(14):4927–4942
Michael HA, Post VEA, Wilson AM, and Werner AD (2017) Science, society, and the coastal groundwater squeeze. Water Resources Research 53(4):2610–2617
Milne-Home W (2016) Sustainable groundwater management: Policy and practice. Green Technologies for Sustainable Water Management, American Society of Civil Engineers 107–146
Mojarad A and Sabouni MS (2010) Determining optimized depth of agriculturecher wells for extension (Case study of Bojnourd plain). Recent Agricultural Economics Research
Molle F (2011) Aquifer safe yield: hard science or boundary concept. Ground Water
Montanari A, Young G, Savenije HHG, Hughes D, Wagener T, Ren LL, Koutsoyiannis D, Cudennec C, Toth E, and Grimaldi S (2013) “Panta Rhei-everything flows”: Change in hydrology and society-the IAHS scientific decade 2013–2022. Hydrological Sciences Journal, Taylor & Francis 58(6):1256–1275
Mosavi S and Gholami M (2012) Determining the optimal depth of water wells in Seydan Farooj Plain. Water Resources Engineering Journal 104-107 (In Persian)
Noori A, Sarveram H, Eshaghi Sharabiani H, Nouri Gheidari MH, and Ghasemi F (2021) An investigation into groundwater exploitation in Abhar plain and determination of maximum well deepening. Iran-Water Resources Research 17(1):33–46
Ohdedar B (2017) Groundwater law, abstraction, and responding to climate change: Assessing recent law reforms in British Columbia and England. Routledge 42(6):691–708
Owen D, Cantor A, Green Nylen N, Harter T and Kiparsky M (2019) California groundwater management, science-policy interfaces, and the legacies of artificial legal distinctions. Environmental Research Letters, IOP Publishing 14(4):045016
Pierce SA, Sharp JM, Guillaume JHA, Mace RE, and Eaton DJ (2012) Aquifer-yield continuum as a guide and typology for science-based groundwater management. Hydrogeology Journal 21(2):331–340
Piscopo V, Di Luca S, Dimasi M, and Lotti F (2019) Sustainable yield of a hydrothermal area: From theoretical concepts to the practical approach. Groundwater 57(2):337–348
Ponce VM (2007) Sustainable yield of groundwater. California Department of Water Resources
Qin H, Cao G, Kristensen M, Refsgaard JC, Rasmussen MO, He X, Liu J, Shu Y, and Zheng C (2013) Integrated hydrological modeling of the North China Plain and implications for sustainable water management. Hydrology and Earth System Sciences, Copernicus GmbH 17(10):3759–3778
Quevauviller P, Batelaan O, and Hunt RJ (2016) Groundwater regulation and integrated water planning. Integrated groundwater management. Springer, Cham, 197–227
Rudestam K and Langridge R (2014a) Sustainable yield in theory and practice: Bridging scientific and mainstream vernacular. Groundwater 52(S1):90–99
Rudestam K and Langridge R (2014b) Sustainable yield in theory and practice: bridging scientific and mainstream vernacular. Groundwater 52(S1):90–99
Samani S (2020) Providing sustainable global groundwater resources management models to improve the sustainability plan in Iran. Iran-Water Resources Research 16(2):271–291
Scanlon BR, Reedy RC, and Tachovsky JA (2007) Semiarid unsaturated zone chloride profiles: Archives of past land use change impacts on water resources in the southern High Plains, United States. Water Resources Research 43(6)
Shu Y, Villholth KG, Jensen KH, Stisen S, and Lei Y (2012) Integrated hydrological modeling of the North China Plain: Options for sustainable groundwater use in the alluvial plain of Mt. Taihang. Journal of Hydrology 464:79–93
Smith AJ, Walker G, and Turner J (2010) Aquifer sustainability factor: A review of previous estimates. International Association of Hydrogeologists (AIH) and the Geological Society of Australia (GSA). EP104589
Snyder JH (1955) Ground water in California: The experience of Antelope Valley. Unversity of California, Diversion of Agricultural Sciences
Sophocleous M (1997) Managing water resources systems: Why" safe yield" is not sustainable. Groundwater, Ground Water Publishing Company 35(4):561
Sophocleous M (2000) From safe yield to sustainable development of water resources-the Kansas experience. Journal of hydrology 235(1–2):27–43
Sophocleous M (2012) The evolution of groundwater management paradigms in Kansas and possible new steps towards water sustainability. Journal of Hydrology 414:550–559
Taylor RG, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, and Edmunds M (2013) Ground water and climate change. Nature Climate Change, Nature Publishing Group 3(4):322–329
Theis C V (1940) The source of water derived from wells. Civil Engineering 10(5):277–280
Thomas HE (1955) Water rights in areas of ground-water mining. US Geological Survey
Thompson SE, Sivapalan M, Harman CJ, Srinivasan V, Hipsey MR, Reed P, Montanari A, and Blöschl G (2013) Developing predictive insight into changing water systems: Use-inspired hydrologic science for the Anthropocene. Hydrology and Earth System Sciences, Copernicus GmbH 17(12):5013–5039
Todd DK (1959) Groundwater hydrology. John Wiley & Sons, Inc, New York.
Wada Y, Van Beek LPH, Sperna Weiland FC, Chao BF, Wu Y, and Bierkens MFP (2012) Past and future contribution of global groundwater depletion to sea‐level rise. Geophysical Research Letters 39(9)
Waggener TR (1977) Community stability as a forest management objective. Journal of Forestry, Oxford University Press 75(11):710–714
Walton WC (1970) Groundwater resource evaluation. McGraw-Hill Series in Water Resources and Environmental Engineering (USA) eng. McGraw-Hill
Wheater HS and Gober P (2015) Water security and the science agenda. Water Resources Research 51(7):5406–5424
Williams CC and Lohman SW (1949) Geology and ground-water resources of a part of south-central Kansas, with specific references to the Wichita municipal water supply. Kansas Geological Survey Bulletin 79
Wu W-Y, Lo M-H, Wada Y, Famiglietti JS, Reager JT, Yeh PJ-F, Ducharne A, and Yang Z-L (2020) Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nature Communications, Nature Publishing Group 11(1):1–9
Zeraati E (2018) Determining optimized depth of wells for extension considering integrated water resources management and climate change in a watershed. MSc Thesis,University of Sistan & Baluchestan
Zeraati E, Zeinodini S, Pirzadeh B, and Monfared SAH (2021) Determining optimized depth of wells by considering climate change and water resources management (Case study: Khash watershed). Journal of Agricultural Economics Research 13(4):160–174