تفکیک فرآیند-محور رخدادهای سیل در سری مقادیر جزئی (مطالعه نمونه: زیرحوضه‌های رودخانه گرگانرود)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری علوم و مهندسی آبخیزداری، گروه آبخیزداری، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 دانشیار گروه آبخیزداری، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 استادیار گروه آبخیزداری، دانشکده مرتع و آبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

تعیین فرایند‌های تولید سیل و لحاظ نمودن آن در تحلیل‌های هیدرولوژی به برآورد‌های قابل اطمینان‌تر کمک می‌کند. تمرکز صرف بر محاسبات ریاضی برای بررسی پدیده سیل باعث می‌شود که فرآیند‌های فیزیکی طبیعت کمتر مورد توجه قرار گیرند. لذا، در این تحقیق به تفکیک فرآیند-محور رخداد‌های سیل در 20 ایستگاه هیدرومتری در حوضه رودخانه گرگانرود به‌عنوان یکی از حوضه‌های با رخدادهای شدید و فراوان سیل در شمال کشور، پرداخته شده است. به‌منظور استخراج سری مقادیر جزئی (بالاتر از آستانه) با کمک رویکرد POT در هر ایستگاه، مراحل اساسی این رویکرد شامل انتخاب مقدار آستانه بهینه و برقراری شرط استقلال در رخداد‌های سیل، انجام شد. پس از تعیین رخداد‌های سیل، با استفاده از شاخص‌های زمان وقوع رخداد، زمان تداوم بارش، زمان تداوم سیل، دمای هوا و رطوبت پیشین خاک، انواع سیل شامل سیل‌های ناشی از بارش جبهه‌ای، بارش جابجایی، ذوب برف و باران روی برف در هر ایستگاه تعیین شد. نتایج نشان می‌دهد که، سیل­های ناشی از بارش جبهه‌ای و باران روی برف به ترتیب بیشترین و کمترین فراوانی را در حوضه دارند. یافته‌های تحقیق حاکی از آن است که استفاده از رویکرد POT و شاخص‌های طبقه‌بندی انواع سیل می‌تواند به تحلیل‌های دقیق‌تر آماری در مطالعات و مدیریت سیل منجر شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Process-Based Flood Type Separation for Partial Duration Series (Sample Study: The Gorganrood River Sub-Basins)

نویسندگان [English]

  • Akram Lalozaei 1
  • Amir Sadoddin 2
  • Arash Zare Garizi 3
  • Vahed Berdi Sheikh 2
1 - Ph.D. Candidate, Watershed Management Department, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Associate Professor, Watershed Management Department, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Assistant Professor, Department of Watershed Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

Determining flood generation processes and incorporating them in hydrological studies can help make more reliable estimates. Focusing merely on mathematical computations in flood studies sometimes lead to paying less attention to the basic physical processes. Therefore, this research aims to present a process-based flood separation study for 20 hydrometric stations in the Gorganrood River Basin attributed as a flood prone area in the northern part of Iran. For this purpose, partial series of flood events at each station were extracted using the Peak-Over-Threshold (POT) approach selecting an optimal threshold value to determine flood events and considering the independence of the series values. Subsequent to characterizing flood events using some separation indicators including time of occurrence, rainfall duration, flood duration, air temperature, and antecedent soil moisture condition, different types of floods (i.e., floods caused by frontal precipitation, convective precipitation, snowmelt and rain on snow) were identified for each station. The results showed that floods caused by frontal precipitation and rain on snow have the highest and lowest frequencies in the basin, respectively. The research findings indicated that using POT approach and the indicators for classifying the different flood types can lead to a more accurate statistical analysis in flood studies and management.

کلیدواژه‌ها [English]

  • POT Approach
  • Partial Duration Series
  • Flood Generation Process
  • the Gorganrood River Basin
Alila Y and Mtiraoui A (2002) Implications of heterogeneous flood-frequency distributions on traditional stream-discharge prediction techniques. Hydrological Processes 16(5):10651084
Ashkar F and Rousselle J (1983) The effect of certain restrictions imposed on interarrival times of flood events on the Poisson distribution used for modeling flood counts. Water Resources Research 19(2):481-485
Berghuijs W R, Woods R A, Hutton C J, Sivapalan M (2016) Dominant flood generating mechanisms across the United States. Geophysical Research Letters 43(9):4382-4390
Biggs B J F, Duncan M, Jowett I J, Quinn J G, Hickey C M, Davies-Colley R W, Close M E J (1990) Ecological characterization, classification, and modelling of New Zealand rivers: An introduction and synthesis. New Zealand Journal of Marine and Freshwater Research 24(3):277–304
Burn D H (1996) The use of seasonality measures in hydrology. In: Brunelle, P.E., Editor. Proceedings, Annual Conference of the Canadian Society for Civil Engineering, Montreal, Quebec 1:264–273
Burn D H (1997) Catchment similarity for regional flood frequency analysis using seasonality measures. Journal of Hydrology 202(1-4):212-230
Diezig R and Weingartner R (2007) Hochwasserprozesstypen in der Schweiz, Wasser und Abfall. Springer Vieweg, Wiesbaden, vol. 4, Jahrgang, Heft 1-2:18-26
Filipova V, Lawrence D, Klempe H (2018) Effect of catchment properties and flood generation regime on copula selection for bivariate flood frequency analysis. Acta Geophysica 66(4):791-806
Haines A, Finlayson B T, McMahon T A L (1988) A global classification of river regimes. Applied Geography 8(4):255–272
Hannah D, Smith B M, Gurnell A P, McGregor G R M (2000) An approach to hydrograph classification. Hydrological Processes 14(2):317-338
Hundecha Y, Parajka J, and Viglione A (2017) Flood type classification and assessment of their past changes across Europe. Hydrology and Earth System Sciences Discussions 21:1-29
Kazemikia S, Besharati T, Zolfaghari M, and Ghanbarpour M R (2016) Comparative study of maximum and partial duration series in flood frequency analysis (Case study in Talar and Babolrud watersheds in Mazandaran Province). Iran-Watershed Management Science & Engineering 10(34):113-117 (In Persian)
Kumar R, Chatterjee C, Kumar S, Lohani A, Singh R D K (2003) Development of regional flood frequency relationships using L-moments for Middle Ganga Plains Subzone 1 (f) of India. Water Resources Management 17(4):243-257
Lalouzai A, Sadoddin A, Zare Garizi A, Sheikh V (2020) Analysis of seasonal behavior of flood events and their temporal changes for the Hyrcanian watersheds (Pilot study: watersheds of the Gorganrud River Basin, Iran). Journal of Natural Environmental Hazards 9(25):143-158
Mahdavi M (2008) Applied hydrology. Institute of Printing and Publishing. University of Tehran. 362p.
Magilligan F J and Graber B E (1996) Hydroclimatological and geomorphic controls on the timing and spatial variability of floods in New England, USA. Journal of Hydrology 178(1-4):159-180
Mardia K V (1975) Statistics of directional data. Journal of the Royal Statistical Society: Series B (Methodological) 37(3):349-371
McCabe G, Hay L J, Clark M P E (2007) Rain-on-snow events in the western United States. Bulletin of the American Meteorological Society 88(3):319-328
Merz R and Bloschl G (2003) A process typology of regional floods. Water Resources Research 39(12)
Merz R, Piock-Ellena U, Blöschl G, Gutknecht D (1999) Seasonality of flood processes in Austria. IAHS Publication (International Association of Hydrological Sciences) 255:273-278
Nied M, Hundecha Y, and Merz B (2013) Flood-initiating catchment conditions: A spatio-temporal analysis of large-scale soil moisture patterns in the Elbe River basin. Hydrology and Earth System Sciences 17(4):1401-1414
Parajka J, Kohnová S, Bálint G, Barbuc M, Borga M, Claps P, Cheval S, Dumitrescu A, Gaume E, Halvcová K, Merz R, Pfaundler M, Stancalie G, Szolgay J, and Blöschl G (2010) Seasonal characteristics of flood regimes across the Alpine–Carpathian range. Journal of Hydrology 394(1-2):78-89
Ribatet M (2011) A user’s guide to the POT package (version 1.4). University of Montpellier II, 31, https://cran.r-project.org/package=POT.
Robinson J, Sivapalan M S (1997) Temporal scales and hydrological regimes: Implications for flood frequency scaling. Water Resources Research 33(12):2981-2999
Richards K 1994 Peaks-over-threshold flood database: Summary statistics and seasonality by Adrian C. Bayliss and Richard C. Jones, Institute of Hydrology Report No. 121, Natural Environment Research Council, 1993. No. of pages: 61. Price: £ 15. ISBN 0948-540-47-8. Earth Surface Processes and Landforms 19:675-675
Sarhadi A, Soltani S, Modarres R (2008) Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis. Journal of Hydrology 458:68-86
Sawicz K, Wagener T, Sivapalan M, Troch P A, Carrillo G (2011) Catchment classification: Empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrology and Earth System Sciences 15(9):2895-2911
Sikorska A, Viviroli D E, Seibert J (2015) Flood‐type classification in mountainous catchments using crisp and fuzzy decision trees. Water Resources Research 51(10):7959-7976
Sivakumar B, Singh V, Berndtsson R P, Khan S K (2015) Catchment classification framework in hydrology: Challenges and directions. Journal of Hydrologic Engineering 20(1):A4014002
Snelder T, Biggs B H, Woods R A J (2005) Improved ecohydrological classification of rivers. River Research and Applications 21(6):609-628
Szolgay J, Gaál L, Bacigál T, Kohnová S, Hlavčová K, Výleta R, Blöschl G (2016) A regional look at the selection of a process-oriented model for flood peak/volume relationships. Proceedings of the International Association of Hydrological Sciences 373:61-67
Szolgay J, Gaál L, Kohnová S, Hlavcová K, Výleta R, Bacigál T, Blöschl G (2015) A process-based analysis of the suitability of copula types for peak-volume flood relationships. Proceedings of the International Association of Hydrological Sciences 370:183-188
Turkington T, Breinl K, Ettema J, Alkema D, Jetten V (2016) A new flood type classification method for use in climate change impact studies. Weather and Climate Extremes 14:1-16
Wagener T, Sivapalan M, Troch P, Woods R (2007) Catchment classification and hydrologic similarity. Geography Compass 1(4):901-931
Zahedianfar F, Ghorbani K, Moftah Halqi M, Abdolhosseini M, Dehghani A (2016) Flood frequency analysis on the basis of extreme values theory (Case Study: Arazkuseh hydrometric station, Golestan ). Journal of Soil and Water Conservation Research 22(3):121-135 (In Persian)
Zhang Y, Arthington A, H. Bunn S, Mackay S E, Xia J, Kennard M (2012) Classification of flow regimes for environmental flow assessment in regulated rivers: The Huai River Basin, China. River Research and Applications 28(7):989-1005