حذف آلودگی آرسنیت از محیط اشباع همگن و ناهمگن ستون خاک با استفاده از نانوذرات آهن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مهندسی منابع آب، دانشگاه تهران.

2 استاد گروه آبیاری و آبادانی، پردیس کشاورزی کرج، دانشگاه تهران.

چکیده

آلودگی یکی از مسائل مطرح در آب زیرزمینی است که با افزایش فعالیت‌های صنعتی، دفع فاضلاب در چاه­‌های جذبی و برداشت بی‎‌رویه از آبخوان در حال افزایش است. یکی از آلودگی‌های رایج، سمی و خطرناک موجود در آب­ زیرزمینی، آلاینده آرسنیک است که غلظت آن در بعضی از مناطق کشور به مراتب بیشتر از حد استاندارد است. تزریق نانوذرات آهن به محیط آبخوان راهی جدید، کارامد، کم‎‌هزینه و پاک است که مطالعاتی برای حذف درجای آن در محیط آبخوان اخیراً مورد توجه محققین قرار گرفته است. هدف از این تحقیق بررسی روند حذف آرسنیت در محیط آب­ زیرزمینی توسط نانو ذرات آهن صفر با شبیه‎‌سازی یک مدل تجربی ستون خاک تک بعدی در شرایط همگن و ناهمگن در دو دانه‌‎بندی خاک و دو سرعت جریان مختلف است. بدین منظور ابتدا با انجام آزمایش‌­های پیمانه‌ای تأثیر تغییرات غلظت نانوذرات آهن و آرسنیت (As(III)) در گذشت زمان با پارامترهای محیطی چون تغییرات دمایی و pH بررسی شد. در آزمایش‎های پیمانه‌­ای دیده شد که محیط اسیدی و دمای زیاد سرعت واکنش بین نانوذرات آهن و آلاینده آرسنیت را تسریع می­‌نماید. سپس، در ستون خاک یک بعدی اشباع همگن، با دو قطر ذرات خاک متفاوت؛ آب آلوده به ارسنیت جاری شد و نانوذرات آهن تزریق شد. نتایج ستون‌‎های همگن نشان داد که سرعت حذف آرسنیت توسط نانوذرات آهن در حد دقیقه است که با گذشت زمان و در طول ستون خاک میزان غلظت آرسنیت تاحد مجاز شرب کاسته شده است. همچنین، در ستون ناهمگن خاک این آزمایش با دو سرعت جریان انجام شد و نتایج نشان دادند افزایش سرعت جریان و لایه‎‌بندی خاک از میزان کاهش آلاینده می‌کاهد. با پایان آزمایش‌­های ستون خاک همگن و ناهمگن دیده شد میزان آهن خاک در حد مجاز شرب بود و با هدایت ­هیدرولیکی خاک، افت جریان افزایش یافته است. در نهایت، این پژوهش نشان داد که پالایش آرسنیت در محل توسط نانوذرات آهن در ستون خاک راندمان زیادی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Arsenite Reduction in Homogeneous and Heterogeneous Soil Columns Using Iron Nanoparticles

نویسندگان [English]

  • mahdieh janbaz fotamy 1
  • majid kholghi 2
  • A Hoorfar 2
1 Ph.D. Water Resource Management, Irrigation and Reclamation Department, University of Tehran, Karaj, Iran
2 Professor, Irrigation and Reclamation Department, University of Tehran, Karaj, Iran.
چکیده [English]

Arsenic is a toxic and dangerous pollution in groundwaters. A new, efficient and low-cost method for in-situ removal of the arsenic from aquifers is by using zero-valent iron nanoparticles which has been investigated in this research by three types of laboratory experiments including batch, homogenies soil column, and heterogeneous soil column tests. Batch tests have been mainly performed to investigate the effects of temperature and pH on the reaction process between the iron nanoparticles and arsenic. Then, the effect of soil grain sizes and flow velocity in the arsenic remediation by iron nanoparticles have been investigated in homogeneous and heterogeneous soil columns. Based on the experimental results useful graphs are presented to estimate the arsenic concentration for different time and different locations on the soil columns. The results showed the high capability of the zero-valent iron nanoparticles as a useful tool for removing the arsenic pollution from the groundwater. Injected nanoparticles in the soil column, especially in the lower flow velocities and fine-grained soils have been reduced hydraulic conductivity. Also, the results showed that as the flow velocity increases the remediation rate of arsenic pollution with iron nano particles decreases.
 

کلیدواژه‌ها [English]

  • Zero-Valent Iron Nanoparticles
  • Remediation Arsenite Pollution
  • Batch Test
  • Heterogeneous Soil Column
  • Homogenous Soil Column
Akin I, Arslan G, Tor A, Ersoz M, Cengeloglu Y (2012) Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud. Journal of Hazardous Materials 235–236:62-68
Alizadeh A (2002) Applied hydrology. Ferdowsi University of Mashhad, 942 (In Persian)
Apayding O G, Bertin H, Castanier L M, Kovascek A R (1998) An experimental investigation 0f from flow in homogeneous porous media. U. S: Department of Energy
Asgari A, Mahvi A H, Vaezi F, Ghasri A (2008) Granular ferric hydroxide (GFH) as an adsorbent for removal of arsenate and Arsenite from drinking water. SJKU 13(2):76-86 (In Persian)
Babaee Y, Ghasemzadeh F, Arbab Zavar M, Alavi Moghadam S (2007) Laboratory study of arsenic removal from contaminated water by macroscopic algae "Kara". Environmental Science and Technology Quarterly 9(2-33):11-18 (In Persian)
Basu T, Ghosh U C (2011) Arsenic (III) removal performances in the absence/presence of groundwater occurring ions of agglomerated Fe (III)–Al (III) mixed oxide nanoparticles. Journal of Industrial and Engineering Chemistry 17(5–6):834-844
Basu T, Ghosh U C (2013) Nano-structured iron (III)–cerium (IV) mixed oxide: Synthesis, characterization and arsenic sorption kinetics in the presence of co-existing ions aiming to apply for high arsenic groundwater treatment. Applied Surface Science 283:471-481
Bhowmick. S, Chakraborty S, Mondal P, Renterghem W V, Berghe S, Roman-Ross G, Chatterjee D, Iglesias M (2014) Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chemical Engineering Journal 243:14-23
Byungryul A, Dongye Z (2012) Immobilization of As (III) in soil and groundwater using a new class of polysaccharide stabilized Fe–Mn oxide nanoparticles. Journal of Hazardous Materials 211–212:332-341
Chowdhury S R, Yanful E K (2011) Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water and Environment Journal 25(3):429-437
Cooper AM, Hristovski K D, Möller T, Westerhoff P, Sylvester P (2010) The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons. Journal of Hazardous Materials 183(1-3):381-8
Drinking water standard 1053 (1993)
Evanko C R, Dzombak D A (1997) Remediation of metals-contaminated soils and groundwater. Technology Evaluation Report, 61page
Fatoki J O, Badmus J A (2022) Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation. Journal of Hazardous Materials Advances 5:100052
Feng L, Cao M, Ma X, Zhu Y, Hu C (2012) Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. Journal of Hazardous Materials 217–218:439-446
Gonzalez-Pech, N I, Molloy A L, Zambrano A, Lin W, Bohloul A, Zarate-Araiza R, Avendano C, Colvin, V L (2022) Feasibility of iron-based sorbents for arsenic removal from groundwater. Journal of Chemical Technology & Biotechnology 97(11):3024-3034 
Habuda-Stanić M, Nujić M )2015) Arsenic removal by nanoparticles: A review. Environmental Science and Pollution Research 22(11):8094-123
Hassani F, Babaakbari M, Neyestani M R, Delavar M A (2020) Effect of magnetite nanoparticles and some iron-containing compounds on the availability of Arsenic, Iron, Zinc and Copper in Soil. Ferdowsi University of Mashhad 34(7):1231-1342 (In Persian)
Hosseini S M, Ataie-Ashtiani B, Kholghi M (2011) Nitrate reduction by nano-Fe/Cu particles in packed column. Desalination 276(1–3):214-221 (In Persian)
Hosseini S M,  Ataie-Ashtiani B, Kholghi M (2011) Bench-scaled nano-Fe0 permeable reactive barrier for nitrate removal. Groundwater Monitoring & Remediation 31(4):82–94 (In Persian)
Huang K, Toride N, VanGenuchten M TH (1995) Experimental investigation of solute transport large homogeneous and heterogeneous saturation soil column. Transport in Porous Media 18:302- 283
Jain A, Raven K, Loeppert R (1999) Arsenite and arsenate adsorption on ferrihydrite: -surface charge reduction and net OH-release stoichiometry. Environmental Science & Technology 33:1179-1184
Janbaz Fotamy M, Kholgi M, Hoorfar A, Haghshenas D (2013) Laboratory study of the effect of iron nanoparticles on arsenic removal in water environment. Journal of Environmental Studies (JES) 39(68):149-156 (In Persian)
Kanel S R, Che M J, Chulchol H (2006) Arsenic (V) remove from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology 40(6):2045-2050
Kanel S R, Manning B, Charel L, Choi H (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology 39(5):1291-1298
Kanel S R, Nepal D, Manning B, Choi H (2007) Transport of surface-modified iron nanoparticles in porous media and application to arsenic (III) remediation. Springer Science 9(5):735-725
Katsoyiannis I A, Zouboulis A I (2002) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Research 36(20):5141-5155
Kermani H, Shahab poor J, Behrooz M, Aminzadeh M (2008) Contamination of arsenic and other heavy metals in water sources of Midok region. The 4th Conference on Geology and Environment. Islamic Azad University of Eslamshahr (In Persian)
Li L, Zhou G, Weng Z, Shan X, Li F, Cheng H (2014) Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon 67:500-507
Lou X, Boada R, Simonelli L, Valiente M (2022) Enhanced arsenite removal by superparamagnetic iron oxide nanoparticles in-situ synthesized on a commercial cube-shape sponge: Adsorption-oxidation mechanism. Journal of Colloid and Interface Science 614:460-467
Lin S, Lu D, Liu Z (2012) Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles. Chemical Engineering Journal 211–212(15):46-52
Lunge S, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. Journal of Magnetism and Magnetic Materials 356:21-31
Mosaferi M, Nemati S, Khataee A (2014) Removal of Arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. Journal of Environmental Health Science & Engineering 12:74 (In Persian)
Mosaferi M, taghipoor H, Hassani A H, Kamali kord abad Z, Ghadir zadeh A (2008) Investigating the level of arsenic in drinking water: A case study. Health and Environment 1(1):19-28 (In Persian)
Nadiri A, Gareh khani M, Lotfi nia P, Asadi M (2020) Fuzzy modeling of arsenic removal process from groundwater by iron oxide nanoparticles. Irrigation and Water Engineering 12-2(46):242-254 (In Persian)
Nieto-Delgado C, Rangel-Mendez J R (2012) Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water. Water Research 46(9):2973-2982
Pandey K, Saha S (2021) Microencapsulated Zero Valent Iron NanoParticles in Polylactic acid matrix for in situ remediation of contaminated water. Journal of Environmental Chemical Engineering 8(4):103909
Pandey k, Sharma S, Saha S (2022) Advances in design and synthesis of stabilized zero-valent iron nanoparticles for groundwater remediation. Journal of Environmental Chemical Engineering 10(3):107993
Scheverin V N, Russo A, Grünhut M (2022) Novel iron-based nanocomposites for arsenic removal in groundwater: insights from their synthesis to implementation for real groundwater remediation. Environmental Earth Science 81(7):188
Sterenberg S K, Greenkorn R A (1994) An experimental investigation of dispersion in layered porous media. Transport in Porous Media 15(1):15-30
Swartz C, Schwartz F (1998) An experimental study of mixing and instability development in variable-density systems. Journal of Contaminant Hydrology 34(3):169-189
Vance D B (1995) Arsenic chemical behavior and treatment. The National Environmental Journal 5(3): 60-64
Wu Z, Su X, Lin Z, Owens G, Chen Z (2019) Mechanism of As(V) removal by green synthesized iron nanoparticles. Journal of Hazardous Materials 379:120811
Zhang T C, Hu Z, Surampalli R Y, Tyagi R D, Lia K C K, Lo I M C (2009) Nanotechnologies for water environment applications. Committee of the Environment Council, Environment and Water Resources Institute (EWRI) of the American Society of Civil Engineers, 628 pages