استفاده از سامانه گوگل ارث انجین در پایش و تحلیل روند سری زمانی خشکسالی هیدرولوژیکی به ازای شاخص SWSI در زیرحوضه‎های غرب دریاچه ارومیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی منابع آب، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

2 دانشجوی دکتری مهندسی منابع آب ، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

3 استاد گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

چکیده

خشکسالی به عنوان یک پدیده طبیعی در مناطق مختلف به ویژه در مناطقی با اقلیم خشک و نیمه‏‌خشک مانند ایران یکی از چالش‌های بسیار مهم در تأمین آب هست. در این مطالعه، خشکسالی هیدرولوژیک در زیرحوضه‌های آبریز غرب دریاچه ارومیه به کمک شاخص تأمین آب‌های سطحی (SWSI) از سال‏ آبی 89-88 تا سال آبی 98-97 (از اکتبر 2009 تا سپتامبر 2019) بررسی شده ‌است که در آن از داده‌های بارش، آب معادل برف، رواناب‌‏های سطحی و حجم مخازن سطحی (یا تغییرات حجم ذخایر آب زیرزمینی)، در مقیاس سالانه استفاده شده ‏است. روش‎‌شناسی تحقیق مبتنی بر شاخص خشکسالی هیدرولوژیکی SWSI، استفاده از تصاویر ماهواره‌ای در سامانه تحت وب گوگل ارث انجین، تعیین سطح پوشش برف با استفاده از شاخص NDSI و در نهایت تحلیل روند خشکسالی با استفاده از آزمون روند من‌-کندال است. نتایج حاصل از تعیین اوزان مؤلفه‌های فوق‌‏الذکر با استفاده از روش رتبه‌دهی سلسله مراتبی (AHP)، نشان داد که در زیرحوضه‏‌های مورد مطالعه، بارش مهمترین عامل در خشکسالی‌های هیدرولوژیکی است. همچنین، نتایج حاصل از شاخص SWSI، نشان داد که طی دوره آماری 10 سال آبی مورد مطالعه، در هیچ یک از زیرحوضه‌های مورد مطالعه شرایط مرطوب، خشکسالی زیاد و خشکسالی شدید رخ نداده و بطور کلی در 54 درصد موارد شرایط نزدیک نرمال، در 19 درصد موارد شرایط خشکسالی کم، حاکم بوده و شرایط نیمه‌مرطوب و خشکسالی متوسط به ترتیب با 14 درصد و 13 درصد در رتبه‌های بعدی قرار دارند. همچنین، سال آبی 98-1397 (از اکتبر 2018 تا سپتامبر 2019) مرطوب‌ترین سال آبی و سال‌های آبی 96-1395 (از اکتبر 2016 تا سپتامبر 2017) و 91-1390 (از اکتبر 2011 تا سپتامبر 2012) خشک‌ترین سال‌های آبی بوده‌اند. مضافاً در تمامی زیرحوضه‌های آبریز مورد مطالعه به استثنای زیرحوضه آبریز زولاچای، وضعیت هیدرولوژیکی نزدیک نرمال بیشترین وضعیت رخ داده در طول دوره آماری مورد مطالعه بوده ‏است. همچنین، نتایج حاصل از آزمون روند ناپارامتری من‌-کندال نشان داد که تنها در زیرحوضه‌های آبریز باراندوزچای و رشکان-تلخاب، روند وضعیت هیدرولوژیکی حوضه افزایشی (افزایش رطوبت) بوده‏ است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using Google Earth Engine in Monitoring and Trend Analysis of Hydrological Drought Time Series Based on SWSI Index in Western Sub-Basins of Lake Urmia

نویسندگان [English]

  • Ramin Ghorbanzadeh 1
  • Nahid Mirhaji 2
  • Hossien Rezaie 3
1 Ph.D. Student in Water Engineering, Department of Science and Water Engineering, College of Agriculture, Urmia University, Urmia, Iran.
2 Ph.D. Student in Water Engineering, Department of Science and Water Engineering, College of Agriculture, Urmia University, Urmia, Iran.
3 Professor, Department of Science and Water Engineering, College of Agriculture, Urmia University, Iran.
چکیده [English]

Drought as a natural phenomenon is one of the most important challenges in water supply, especially in arid and semi-arid climates such as Iran. In this study, the hydrological drought has been investigated in the western sub-basins of Lake Urmia using the Surface Water Supply Index (SWSI) from Oct. 2009 to Sep. 2019. For this purpose, annual precipitation data, snow water equivalent, surface runoff, and reservoir storage (or changes in groundwater storage) have been used. The methodology of the study is based on the SWSI index, remote sensing using Google Earth Engine, determining the snow cover area using the NDSI index, and analyzing the drought trend using the Mann–Kendall trend test. The results showed that according to the weights of the components obtained by the Analytic Hierarchy Process (AHP), precipitation is the most important factor in the study area in hydrological droughts. Also, according to the SWSI index, during the 10 water year period, wet, extreme drought, and severe drought conditions have not occurred in the study area and generally, in 54% of the cases near-normal conditions, in 19% of the cases incipient drought conditions prevail and in the next ranks are abundant and moderate drought conditions with respectively 14% and 13% incidence. Also, the wettest water year was from Oct. 2018 to Sep. 2019 and the driest water years were from Oct. 2016 to Sep. 2017 and from Oct. 2011 to Sep. 2012. In addition, in all studied sub basins except Zolachay, the near-normal hydrological condition was the most common condition during the study period. Also, the results of Mann-Kendall non-parametric trend test showed that only in the Baranduzchay and Rashkan-Talkhab sub basins, the trend of hydrological drought time series has been increasing (increasing humidity).

کلیدواژه‌ها [English]

  • Drought
  • Google Earth Engine
  • Mann-Kendall
  • NDSI Index
  • SWSI Index
  • Urmia Lake
Chanussot J and Janalipour M (2022) Remotely-Sensed Ecosystem Health Assessment (RSEHA) model for assessing the changes of ecosystem health of Lake Urmia Basin. International Journal of Image and Data Fusion 13(2):180-205
Araghinejad S (2011) An approach for probabilistic hydrological drought forecasting. Iran-Water Resources Management 25(1):191-200 (In Persian)
Asadi M, Rahimi M, Yazdani M and Peghahfar N (2018) Analysis of seasonal and annual rainfall trends using non-parametric methods (Case study: Kurdistan province). The First National Environment Conference, 22 May, Esfahan (In Persian)
Azizi G, Rahimi M, Mohammadi H, and Khoshaklagh F (2017) Spatio-temporal variations of snow cover in the southern slope of central Alborz. Physical Geography Research 49(3):381-393 (In Persian)
Barua S (2010) Drought assessment and forecasting using a nonlinear aggregated drought index. Ph.D. Thesis, Victoria University
Bavera D and De Michele C (2009) Snow water equivalent estimation in the Mallero basin using snow gauge data and MODIS images and fieldwork validation. Hydrological Processes: An International Journal 23(14):1961-1972
Durand M and Margulis SA (2007) Correcting first‐order errors in snow water equivalent estimates using a multifrequency, multiscale radiometric data assimilation scheme. Journal of Geophysical Research: Atmospheres 112(D13)
Garen DC (1993) Revised surface-water supply index for western United States. Journal of Water Resources Planning and Management 119(4):437-454
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, and Moore R (2017) Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202:18-27
Haji Azizi S, Kheirkhah Zarkesh MM, and Sharifi E (2011) Suitable site selection for groundwater dams construction using spatial and non spatial analytical hierarchy process (case study: Tafts Pishkuh catchments, Yazd province). RS and GIS for Natural Resources 2(2):27-37
Hall DK, Riggs GA, and Salomonson VV (1995) Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment 54(2):127-140
Hall DK, Riggs GA, Salomonson VV, DiGirolamo N E, and Bayr K J (2002) MODIS snow-cover products. Remote Sensing of Environment 83(1-2):181-194
Hassan QK, Bourque CP, Meng F-R, and Richards W (2007) Spatial mapping of growing degree days: An application of MODIS-based surface temperatures and enhanced vegetation index. Journal of Applied Remote Sensing 1(1):013511
Jabbar A, Othman AA, Merkel B, and Hasan SE (2020) Change detection of glaciers and snow cover and temperature using remote sensing and GIS: A case study of the Upper Indus Basin, Pakistan. Remote Sensing Applications: Society and Environment 18:100308
Jalao ER, Wu T, and Shunk D (2014) A stochastic AHP decision making methodology for imprecise preferences. Information Sciences 270:192-203
Janalipour M, Abbaszadeh Tehrani N, Shafri H, Salehi S, Mohammadzadeh A, and Ghasemi S (2022) Satellite-based monitoring of lake Urmia basin health with focus on its ecosystem regulating services by applying total ecosystem health (TEH) model. International Journal of Environmental Science and Technology 19(7):6151-6162
Khosravi M, Tawassi T, Raispoor K, and Omidi Ghaleh Mohammadi M (2017) A Survey on snow cover variation in mount Zardkooh-Bakhtyare Using Remote Sensing (R.S). Journal of Hydrogeomorphology 4(12):25-44 (In Persian)
Kim Y-O, Lee J-K, and Palmer RN (2012) A drought outlook study in Korea. Hydrological Sciences Journal 57(6):1141-1153
Kuchment LS, Romanov P, and Gelfan A (2010) Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation. Hydrology and Earth System Sciences 14(2):339-350
Kwon H-J and Kim S-J (2010) Assessment of distributed hydrological drought based on hydrological unit map using SWSI drought index in South Korea. KSCE Journal of Civil Engineering 14(6):923-929
Maheras P, Balafoutis C, and Vafiadis M (1992) Precipitation in the central Mediterranean during the last century. Theoretical and Applied Climatology 45(3):209-216
Maroofi S (2003) Comparison of rainfall and river flow data for regional drought studies. 3rd Regional Conference on Climate Change, 21 Nov, Esfahan (In Persian)
Moghimi MM, kouhi E, and Zarei AR (2018) Drought monitoring and forecasting, using RDI index and Markov Chain mathematical model. Journal of Irrigation and Water Engineering 8(3):153-165 (In Persian)
Molotch NP and Margulis SA (2008) Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: A multi-resolution, multi-sensor comparison. Advances In Water Resources 31(11):1503-1514
Nolin AW and Liang S (2000) Progress in bidirectional reflectance modeling and applications for surface particulate media: Snow and soils. Remote Sensing Reviews 18(2-4):307-342
Noroozi A and Mohammadi Z (2016) Survey of hydrological drought and its effects on lenjan agricultural region. Spatial Planning Scientific Research Journal 6(2):97-116 (In Persian)
Nouri M, Morid S, Karimi N, and Gholami H (2021) Spatial and temporal variation of temperature and precipitation trends of aras transboundary river basin. Iran-Water Resources Research 17(3):104-117
Nyokabi EW, Wambua RM, and Okwany RO (2021) Evaluation of spatial and temporal hydrological drought using surface water supply index in Malewa river catchment, Naivasha. Journal of Engineering in Agriculture and the Environment 6(1):1-8
Önöz B and Bayazit M (2003) The power of statistical tests for trend detection. Turkish Journal Of Engineering And Environmental Sciences 27(4):247-251
Parhizkari A, Yavari Q, Mahmoodi A, and Bakhshi Khaniki Q (2020) Evaluation of the potential effects of establishing a local water market in the face of drought and water shortage in Tehran Province. Iran-Water Resources Research 16(2):151-163 (In Persian)
Partal T and Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrological Processes: An International Journal 20(9):2011-2026
Patel P and DippalIsrani MR (2020) Snow cover area detection using NDSI and Band Ratio Method. International Journal of Innovative Technology and Exploring Engineering (IJITEE) 9(7):2278-3075
Pervez MS, McNally A, Slinski K, Jacob JP, Getirana A, Budde ME, Rowland J, and Jayanthi H (2020) Remote sensing and modeling of water availability in Afghanistan from snow dominated highlands to arid lowlands. AGU Fall Meeting Abstracts, Dec, H010-0014
Poon SKM (2004) Hydrological modelling using MODIS data for snow covered area in the northern boreal forest of Manitoba. M.Sc. Thesis, Department of Geomatics of Science, University of Calgary
Rahimi D and Mohammadi Z (2017) Assessing the hydrological drought of Zayande Rood Basin. Geographical Planning of Space 25(7):221-233 (In Persian)
Rodell M, Houser P, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, and Bosilovich M (2004) The global land data assimilation system. Bulletin of the American Meteorological Society 85(3):381-394
Saaty TL (2008) Decision making with the analytic hierarchy process. International Journal of Services Sciences 1(1):83-98
Salomonson VV and Appel I (2004) Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sensing of Environment 89(3):351-360
Sekhon NS, Hassan QK, and Sleep RW (2010) Evaluating potential of MODIS-based indices in determining “snow gone” stage over forest-dominant regions. Remote Sensing 2(5):1348-1363
Shaban A (2009) Indicators and aspects of hydrological drought in Lebanon. Iran-Water Resources Management 23(10):1875-1891 (In Persian)
Shafer B and Dezman L (1982) Development of surface water supply index (SWSI) to assess the severity of drought condition in snowpack runoff areas. Proceeding of the Western Snow Conference, April, Reno, Nevada
Shahrokh Vand S, Lashanizand M, and Khakpour M (2009) A survey of hydrological droughts and its relationship with precipitation in the basins of Khorramabad Rivers. Environmental Based Territorial Planning (Amayesh) 4(13):71-82 (In Persian)
Sikandar A, Cheema MJM, Waqas MM, Waseem M, Awan UK, and Khaliq T (2020) Changes in snow cover dynamics over the Indus Basin: Evidences from 2008 to 2018 MODIS NDSI Trends Analysis. Remote Sensing 12(17):2782
Veatch W, Brooks P, Gustafson J, and Molotch N (2009) Quantifying the effects of forest canopy cover on net snow accumulation at a continental, mid‐latitude site. Ecohydrology: Ecosystems, Land and Water Process Interactions, Ecohydrogeomorphology 2(2):115-128
Wambua R, Mutua B, and Raude J (2017) Characterization of temporal and spatial drought risk events using surface water supply index (SWSI) in a tropical river basin. MOJ Civil Engineering 2(2):43-50