شناسایی و تحلیل عوامل مؤثر در تشدید سیلاب و خسارت ناشی از آن در رخداد سیل فروردین 1398 در حوضه ‌آبریز کرخه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی عمران-گرایش مدیریت منابع آب، گروه مهندسی آب و محیط زیست، دانشکده مهندسی عمران، دانشگاه صنعتی شریف.

2 فارغ‌التحصیل کارشناسی ارشد مهندسی عمران-گرایش مهندسی محیط‌زیست، گروه مهندسی آب و محیط‌زیست، دانشکده مهندسی عمران، دانشگاه صنعتی شریف.

3 استادیار، گروه مهندسی آب و محیط‌زیست، دانشکده مهندسی عمران، دانشگاه صنعتی شریف.

چکیده

مداخلات انسانی از جمله تغییر کاربری اراضی و تجاوز به حریم رودخانه، به همراه اثرات تغییر اقلیم، منجر به افزایش خسارت‌های ناشی از سیلاب شده است. هدف اصلی این مطالعه، شناسایی و تحلیل عوامل مؤثر بر تشدید سیلاب 1398 و خسارات‌های ناشی از آن در استان خوزستان است که در این راستا به تعیین دوره بازگشت سیل‌های بزرگ منطقه در فروردین 1398، بررسی تغییرات کاربری اراضی با استفاده از الگوریتم جنگل تصادفی طی سال­های 1379 تا 1397، بررسی تغییرات میزان رطوبت خاک با استفاده از داده‌های سنجش از دور و همچنین تحلیل منحنی فرمان سدهای کرخه و دز پرداخته شده است. نتایج این مطالعه نشان داد که دبی مشاهده شده در ایستگاه جلوگیر که نزدیک‌ترین ایستگاه در بالادست سد کرخه است، دوره بازگشتی معادل 262 سال داشته که به مراتب بزرگتر از دوره‌ بازگشت سیلاب­های تاریخی در منطقه‌ مورد مطالعه است.  همبستگی ضعیف مشاهده شده بین شدت رواناب و میزان رطوبت پیشین خاک در سطح اطمینان 5 درصد طی 30، 45، 60 و 120 روز قبل از وقوع سیلاب حاکی از تأثیر همزمان عوامل دیگر از جمله شدت بارش و ذوب برف بر تشدید سیلاب بوده است. با توجه به نتایج تغییرات سطح اراضی شهری، خاک، پهنه­های آبی و پوشش گیاهی بین سال­های 1379 و 1397، تغییر کاربری اراضی در منطقه­ مطالعه را نمی­توان عامل قوی در تشدید سیلاب به وقوع پیوسته دانست. در نهایت، نحوه بهره‌برداری از سد دز در سال آبی 1398-1397 نسبت به نحوه بهره‌برداری از سد کرخه تأثیر بسیار مؤثرتری روی کنترل سیلاب فروردین 1398 داشته است.   

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification and Analysis of the Dominant Factors Contributing in Intensification of Floods and Damages in the Karkheh Basin in April 2018

نویسندگان [English]

  • Nooshdokht Bayat-Afshary 1
  • Shokoufeh Khoejh 2
  • Mohammad Danesh Yazdi 3
1 Ph.D. Student of water resources management, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran.
2 Graduated student in Environmental Engineering, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran.
3 Assistant Professor, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
چکیده [English]

Human interventions, including land-use change and encroachment on river boundaries along with the impacts of the climate change have resulted in an increase in flood damages. This study aimed to identify and analyze the factors intensifying the floods of April 2019 in the Khuzestan province. To this end, we determined the return period of large floods in the region in April 2019; investigated land-use changes between 2000 and 2018 by using the random forest classifier; explored the changes in the soil moisture using remote sensing data; and analyzed the rule curve of the Karkheh and Dez dams. The results showed that the discharge observed at the Jelogir station, as the nearest station upstream of Karkheh Dam had a return period of 262 years, which is far greater than the return period of historical floods in the study area. The weak correlation between runoff intensity and antecedent soil moisture at 5% confidence level during 30, 45, 60 and 120 days before the flood indicated that beside the antecedent soil moisture other factors such as rainfall intensity and snowmelt were contributing to the intensified flood. We further concluded that the change in the land-use between 2000 and 2018 in the study area cannot be considered as a strong factor in the intensification of floods. Finally, the operation of Dez Dam in the water year of 2018-2019 had a much more effectiver impact on the flood control of April 2019 compared to the operation of Karkheh Dam.
 

کلیدواژه‌ها [English]

  • Karkheh River Basin
  • April 2019 Floods
  • Land-Use Changes
  • Antecedent Soil Moisture
  • Khuzestan Province
Adam E, Mutanga O, Odindi J, and Abdel-Rahman EM (2014) Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing 35(10):3440–3458
Adugna T, Xu W, and Fan J (2022) Comparison of random forest and support vector machine classifiers for regional land cover mapping using coarse resolution FY-3C images. Remote Sensing 14(3):574
Akbari E, Darvishi Boloorani A, Neysani Samany N, Hamzeh S, Soufizadeh S, and Pignatti S (2020) Crop mapping using random forest and particle swarm optimization based on multi-temporal Sentinel-2. Remote Sensing 12(9):1449
Allen M, Raper S, and Mitchell J (2001) Uncertainty in the IPCC’s third assessment report. American Association for the Advancement of Science
Babaeian E, Sadeghi M, Jones SB, Montzka C, Vereecken H, and Tuller M (2019) Ground, proximal, and satellite remote sensing of soil moisture. Reviews of Geophysics 57(2):530–616
Bangira T, Maathuis BHP, Dube T, and Gara TW (2015) Investigating flash floods potential areas using ASCAT and TRMM satellites in the Western Cape Province, South Africa. Geocarto International 30(7):737–754
Beschta RL, Pyles MR, Skaugset AE, and Surfleet CG (2000) Peakflow responses to forest practices in the western cascades of Oregon, USA. Journal of Hydrology 233(1–4):102–120
Blöschl G (2022) Three hypotheses on changing river flood hazards. Hydrology and Earth System Sciences 26(19):5015–5033
Blöschl G, Komma J, Nester T, Rogger M, Salinas JL, and Viglione A (2018) Die Wirkung des Waldes auf Hochwässer. Wildbach-und Lawinenverbau 88(181):288–296
Blöschl G, Nester T, Komma J, Parajka J, and Perdigão RAP (2013) The June 2013 flood in the Upper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods. Hydrology and Earth System Sciences 17(12):5197–5212
Gaál L, Szolgay J, Kohnová S, Parajka J, Merz R, Viglione A, and Blöschl G (2012) Flood timescales: Understanding the interplay of climate and catchment processes through comparative hydrology. Water Resources Research 48(4)
Gislason PO, Benediktsson JA, and Sveinsson JR (2006) Random forests for land cover classification. Pattern Recognition Letters 27(4):294–300
Han J, Pei J, and Kamber M (2011) Data mining: Concepts and techniques. Elsevier
Heidarlou HB, Shafiei AB, Erfanian M, Tayyebi A, and Alijanpour A (2020) Underlying driving forces of forest cover changes due to the implementation of preservation policies in Iranian northern Zagros forests. International Forestry Review 22(2):241–256
Hess TM, Holman IP, Rose SC, Rosolova Z, and Parrott A (2010) Estimating the impact of rural land management changes on catchment runoff generation in England and Wales. Hydrological Processes: An International Journal 24(10):1357–1368
IPRC (2019) Investigation and analysis of the flood events of April 2019. Islamic Parliament Research Center
Isik S, Dogan E, Kalin L, Sasal M, and Agiralioglu N (2008) Effects of anthropogenic activities on the Lower Sakarya River. Catena 75(2):172–181
Jones JA and Grant GE (1996) Peak flow responses to clear‐cutting and roads in small and large basins, western Cascades, Oregon. Water Resources Research 32(4):959–974
Keller T, Sandin M, Colombi T, Horn R, and Or D (2019) Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil and Tillage Research 194:104293
Kim S, Zhang R, Pham H, and Sharma A (2019) A review of satellite-derived soil moisture and its usage for flood estimation. Remote Sensing in Earth Systems Sciences 2(4):225–246
Li H, Zhang C, Zhang S, and Atkinson PM (2020) Crop classification from full-year fully-polarimetric L-band UAVSAR time-series using the Random Forest algorithm. International Journal of Applied Earth Observation and Geoinformation 87:102032
Liu YB, de Smedt F, Hoffmann L, and Pfister L (2005) Assessing land use impacts on flood processes in complex terrain by using GIS and modeling approach. Environmental Modeling & Assessment 9(4):227–235
Lu Y, Song W, Su Z, Lü J, Liu Y, and Li M (2020) Mapping irrigated areas using random forest based on GF-1 multi-spectral data. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 43
Mekha P and Teeyasuksaet N (2021) Image classification of rice leaf diseases using random forest algorithm. 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering. IEEE, 165–169
Miller JD and Hutchins M (2017) The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies 12:345–362
Na X, Zhang S, Li X, Yu H, and Liu C (2010) Improved land cover mapping using random forests combined with landsat thematic mapper imagery and ancillary geographic data. Photogrammetric Engineering & Remote Sensing 76(7):833–840
Paté-Cornell ME (1996) Uncertainties in risk analysis: Six levels of treatment. Reliability Engineering & System Safety 54(2–3):95–111
Penna D, Tromp-van Meerveld HJ, Gobbi A, Borga M, and Dalla Fontana G (2011) The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences 15(3):689–702
Poff NL, Bledsoe BP, and Cuhaciyan CO (2006) Hydrologic variation with land use across the contiguous United States: Geomorphic and ecological consequences for stream ecosystems. Geomorphology 79(3–4):264–285
Reichle RH, de Lannoy GJM, Liu Q, Koster RD, Kimball JS, Crow WT, Ardizzone J v, Chakraborty P, Collins DW, and Conaty AL (2017) Global assessment of the SMAP level-4 surface and root-zone soil moisture product using assimilation diagnostics. Journal of Hydrometeorology 18(12):3217–3237
Rogger M, Agnoletti M, Alaoui A, Bathurst JC, Bodner G, Borga M, Chaplot V, Gallart F, Glatzel G, and Hall J (2017) Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resources Research 53(7):5209–5219
Sakazume R, Ryo M, and Saaveda O (2015) Consideration of antecedent soil moisture for predicting flood characteristics. Japan Society of Civil Engineers 71(4):I_97-I_102
Schilling KE, Gassman PW, Kling CL, Campbell T, Jha MK, Wolter CF, and Arnold JG (2014) The potential for agricultural land use change to reduce flood risk in a large watershed. Hydrological Processes 28(8):3314–3325
SRCIF (2020) Final report; Narrative, analysis, lessons learned and recommendations. Special Reporting Committee on Iran Floods 2019 (In Persian)
Taylor R (1990) Interpretation of the correlation coefficient: a basic review. Journal of diagnostic medical sonography 6(1):35–39
Viglione A and Blöschl G (2009) On the role of storm duration in the mapping of rainfall to flood return periods. Hydrology and Earth System Sciences 13(2):205–216
Wasko C and Nathan R (2019) Influence of changes in rainfall and soil moisture on trends in flooding. Journal of Hydrology 575:432–441
Xu Z, Chen J, Xia J, Du P, Zheng H, and Gan L (2018) Multisource earth observation data for land-cover classification using random forest. IEEE Geoscience and Remote Sensing Letters 15(5):789–793
Zafari A, Zurita-Milla R, and Izquierdo-Verdiguier E (2020) A multiscale random forest kernel for land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13:2842–2852