بهبود مدل‌سازی حوضه آبریز با تجمیع مولفه‌های اصلی هیدرولوژیک در مدل SWAT

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار/گروه مهندسی آب و خاک، دانشکده کشاورزی دانشگاه صنعتی شاهرود، شاهرود، ایران.

2 استاد/ گروه مهندسی آب، دانشکده کشاورزی دانشگاه فردوسی مشهد، مشهد، ایران.

3 استادیار/گروه مهندسی آب و خاک، دانشکده کشاورزی دانشگاه گیلان، رشت، ایران.

4 استاد /گروه مهندسی آب، دانشکده کشاورزی دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

آگاهی دقیق‌تر از مولفه‌های بیلان آب در سطح حوضه‌های آبریز، به فهم بهتر رفتار هیدرولوژیک حوضه‌ها کمک شایانی خواهد نمود. در این تحقیق تاثیر کاربرد دو مولفه رواناب و تبخیر- تعرق واقعی در مدل‌سازی حوضه آبریز نیشابور (9500 کیلومتر مربع) در قالب مدل SWAT (Soil Water Assessment Tool) مورد بررسی قرار گرفت. مدل یک‌بار به کمک داده‌های رواناب و بار دیگر به صورت ترکیبی و با استفاده از داده‌های رواناب و تبخیر- تعرق واقعی به-دست آمده از تکنیک سنجش از دور، واسنجی و رفتار آن در برآورد همین دو مولفه در دوره زمانی جداگانه‌ای اعتبارسنجی شد. نتایج آنالیز حساسیت مدل نشان داد که پارامترهایی نظیر آب قابل دسترس، ضریب جبران کننده تبخیر از سطح خاک و ضریب جبران کننده جذب رو به بالای آب توسط گیاه بیشترین حساسیت را به تغییرات ورودی مدل از خود نشان دادند. نتایج نشان داد که ریشه میانگین مربعات خطا در برآورد رواناب در مرحله اعتبارسنجی و در سه ایستگاه آب‌سنجی اندراب، خرو مجموع و حسین‌آباد برای مدل واسنجی شده بر اساس رواناب در بازه 06/0 تا 19/0 و برای مدل ترکیبی در بازه 02/0 تا 09/0 متر مکعب در ثانیه متغیر بود. اما نقش استفاده از هر دو مولفه رواناب و تبخیر- تعرق واقعی در پیش‌بینی تبخیر- تعرق واقعی برجسته‌تر بود. ریشه میانگین مربعات خطا در برآورد تبخیر- تعرق واقعی در سه زیرحوضه منتخب و برای مدل واسنجی شده بر اساس رواناب در بازه 10 تا 52/18 و برای مدل واسنجی شده ترکیبی در بازه 84/6 تا 82/7 میلیمتر در ماه متغیر بود

کلیدواژه‌ها


عنوان مقاله [English]

Improvement the Watershed Modeling with Aggregation of the Main Hydrological Components Using SWAT Model

نویسندگان [English]

  • R. Moazenzadeh 1
  • B. Ghahraman 2
  • S. Arshad 3
  • K. Davary 4
1 Assistant Professor, Department of Soil and Water Engineering, Faculty of Agriculture, Shahrood University of Technology, Iran. Email: romo_sci@shahroodut.ac.ir
2 Professor, Department of Water Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. Email: bijangh@um.ac.ir
3 Assistant Professor, Department of Water Engineering, Faculty of Agriculture, Guilan University, Iran
4 Professor, Department of Water Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran.
چکیده [English]

More accurate knowledge of the water balance components in the watersheds will help a better understanding of hydrological behavior of the watersheds. In this study, the effect of two components, river discharges and actual evapotranspiration were investigated on the Neyshabour (9500 km2) watershed modeling using SWAT (Soil Water Assessment Tool). First, SWAT with the river discharges values and then with the combination of river discharges and actual evapotranspiration obtained based on remote sensing was calibrated and its performance in predicting of these components in a separate time period was validated. The sensitivity analysis results showed that parameters such as available water content, soil evaporation compensation coefficient and plant uptake compensation factor were the most sensitive to changes of input model parameters. The results showed that the root mean square error for river discharges prediction on the validation period in three hydrometric stations named Andarab, Kharve Majmoo’ and Hossein Abad was varied between 0.06 to 0.19 m3/s and 0.02 to 0.09 m3/s for the models calibrated based on river discharges and combination of river discharges and actual evapotranspiration, respectively. But the use of both mentioned components, river discharge and actual evapotranspiration, was prominent in predicting actual evapotranspiration. Root mean square error for actual evapotranspiration prediction in three selected subbasins was varied between 10 to 18.52 mm/month and 6.84 to 7.82 mm/month for the models calibrated based on river discharges and combination of river discharges and actual evapotranspiration, respectively.

کلیدواژه‌ها [English]

  • Actual Evapotranspiration
  • Hydrometric station
  • Remote Sensing
  • river discharge
  • Sensitivity analysis
Abbaspour KC, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, Klove B (2015) A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology 524:733–752
Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist j, Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology 333:413-430
Akhavan S, Abedi-Koupai J, Mousavi SF, Afyuni M, Eslamian SS, Abbaspour KC (2010) Application of SWAT model to investigate nitrate leaching in Hamadan-Bahar watershed, Iran. Agriculture, Ecosystems and Environment 139:675-688
Alizadeh A, Izady A, Davary K, Ziaei AN, Akhavan S, Hamidi Z (2013) Estimation of actual evapotranspiration at regional–annual scale using SWAT. Iranian Journal of lrrigation and Drainage 2(7):243-258 (In Persian)
Allen RG, Tasumi M, Trezza R, Waters R, Bastiaanssen WGM (2002) SEBAL: Surface Energy Balance Algorithms for Land, Advanced Training and Users Manual. Version 1.0.
Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, van Griensven A, Van Liew MW, Kannan N,  Jha MK (2012) SWAT: Model use, calibration, and validation. American Society of Agricultural and Biological Engineers 55(4):1491-1508
Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association 34:73-89
Bastiaanssen WGM (2000) SEBAL-based sensible and latent heat fluxes in the irrigated Gediz basin, Turkey. Journal of Hydrology 229:87-100
Bieger K, Fohrer N, Hoermann G (2015) Detailed spatial analisys of SWAT-simulated surface runoff and sediment yield in a mountainous watershed in China. Hydrological Sciences Journal 60(5):784-800
Bosch DD, Sheridan JM, Batten HL, Arnold JG (2004) Evaluation of the SWAT model on a coastal plain agricultural watershed. Transactions of the American Society of Agricultural Engineers 47(5):1493-1506
Chu TW, Shirmohammadi A (2004) Evaluation of the SWAT model's hydrology component in the piedmont physiographic region of Maryland. Transactions of the American Society of Agricultural Engineers 47(4):1057-1073
Cui X, Sun W, Teng J, Song H, Yao X (2015) Effect of length of the observed dataset on the calibration of a distributed hydrological model. Remote Sensing and GIS for Hydrology and Water Resource 368:305-311
Daggupati P, Yen H, White MJ, Srinivasan R, Arnold JG, Keitzer CS, Sowa SP (2015) Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie Basin. Hydrological processes 29(26):5307-5320
Du B, Arnold JG, Saleh A, Jaynes DB (2005) Development and application of SWAT to landscapes with tiles and potholes. Transactions of the American Society of Agricultural Engineers 48(3):1121-1133
Eckhardt K, Arnold JG (2001) Automatic calibration of a distributed catchment model. Journal of Hydrology 251:103-109
Fontaine TA, Cruickshank TS, Arnold JG, Hotchkiss RH (2002) Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). Journal of Hydrology 262:209-223
Fu C, James L, Yao H (2015) Investigations of uncertainty in SWAT hydrologic simulations: a case study of a Canadian shield catchment. Hydrological Processes 29(18):4000-4017
Green CH, Griensven AV (2008) Autocalibration in hydrologic modelling: Using SWAT2005 in small-scale watersheds. Environmental Modelling and Software 23:422-434
Gyamfi C, Ndambuki JM, Salim RW (2016) Aplication of SWAT model to the olifants basin: calibration, validation and uncertainty analysis. Journal of Water Resource and Protection 8:397-410
Immerzeel WW, Droogers P (2008) Calibration of a distributed hodrological model based on satellite evapotranspiration. Journal of Hydrology 349:411-424
Kannan N, White SM, Worrall F, Whelan MJ (2007) Hydrological modelling of a small catchment using SWAT-2000- Ensuring correct flow partitioning for contaminant modelling. Journal of Hydrology 334:64-72
Li Z, Liu WZ, Zhang XC, Zheng FL (2009) Impact of land use change and climate variability on hydrology in an agricultural catchment on Loess Plateau of China. Journal of Hydrology 377:35-42
Li Z, Shao Q, Xu Z, Cai X (2010) Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method: A case study of SWAT model applied to Yingluoxia watershed in northwest China. Journal of Hydrology 385:76-83
Marek GW, Gowda PH, Evett SR, Baumhardt RL, Brauer DK, Howell TA, Marek TH, Srinivasan R (2015) Evaluation of SWAT for estimating ET in irrigated and dryland cropping systems in the Texas high plain. In: Emerging Technologies for Sustainable Irrigation, 10-12 November, Long Beach, California, USA, 1-14
Milewski A, Sultan M, Yan E, Becker R, Abdeldayem A, Soliman F, Gelil KA (2009) A remote sensing solution for estimating runoff and recharge in arid environments. Journal of Hydrology 373:1-14
Moriasi DN, Arnold JG, Van Liew MW, Binger RL, Harmel RD, Veith T (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of American Society of Agricultural and Biological Engineers 50(3):885-900
Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and Water Assessment Tool, Theoretical Documentation, version 2009. Texas Water Resources Institute Technical Report No. 406.
Oeurng C, Sauvage S, Sanchez-Perez JM (2011) Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. Journal of Hydrology 401:145-153
Panhalkar SS (2014) Hydrological modeling using SWAT model and geoinformatic techniques. The Egyptian Journal of Remote Sensing and Space Science 17:197-207
Pisinaras V, Petalas C, Gikas GD, Gemitzi A, Tsihrintzis VA (2010) Hydrological and water quality modeling in a medium-sized basin using the soil and water assessment tool (SWAT). Desalination 250:274-286
Shawul AA, Alamirew T, Dinka MO (2013) Calibration and validation of SWAT model and estimation of water balance components of Shaya mountainous watershed, Southeastern Ethiopia. Hydrology and Earth System Sciences 10:13955- 13978
Shen ZY, Gong YW, Li YH, Hong Q, Xu L, Liu RM (2009) A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong watershed in the three gorges reservoir area. Agricultural Water Management 96:1435-1442
Sophocleous MA (2005) Groundwater recharge and sustainability in the high plains aquifer in Kansas, USA. Hydrogeology Journal 13(2):351-365
Tolson BA, Shoemaker CA (2007) Cannonsville reservoir watershed SWAT 2000 model development, calibration and validation. Journal of Hydrology 337:68-86
Uniyal B, Jha MK, Verma AK (2015) Parameter identification and uncertainty analysis for simulating streamflow in a river basin of eastern India. Hydrological Processes 29(17):3744-3766
Wang X, Liang Z, Wang J (2014) Simulation of runoff in Karst-influenced lianjiang watershed using the SWAT model. Scientific Journal of Earth Science 4(2):85-92
Wheater HS, Mathias SA, Li X (2014) Groundwater modeling in arid and semi-arid areas. Cambridge University Press, 131p
Wu K, Johnston CA (2007) Hydrologic response to climatic variability in a Great Lakes watershed: A case study with the SWAT model. Journal of Hydrology 337:187-199
Yesuf HM, Assen M, Alamirew T, Melesse AM (2015) Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. Catena 127:191-205
Yin I, Hu G, Huang J, Wen D, Dong J, Wang X, Li H (2011) Groundwater-recharge estimation in the Ordos Plateau, China: Comparison of methods. Hydrogeology Journal 19:1563-1575
Zhang X, Srinivasan R, Bosch D (2009) Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms and Bayesian Model Averaging. Journal of Hydrology 374:307-317