توزیع اجزای باران به تاج‌بارش، ساقاب و باران‌ربایی در درختان انار و اهمیت آن در مطالعات اکوهیدرولوژی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار/ گروه باغبانی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد ساوه، ساوه، ایران.

2 دانشجوی دکتری/ اکوهیدرولوژی جنگل، گروه جنگلداری و اقتصاد جنگل، دانشکده منابع طبیعی، دانشگاه تهران، ایران.

3 دکتری/ جنگل شناسی و اکولوژی جنگل، دانشکده منابع طبیعی، دانشگاه تهران، ایران.

چکیده

محاسبه‌ی مقادیر توزیع اجزای بارندگی در هنگام برخورد با تاج‌پوشش درختان به سه قسمت تاج‌بارش، ساقاب و باران‌ربایی از مباحث نوین در مطالعات اکوهیدرولوژی و منابع آب به‌شمار می‌آید. هدف از این پژوهش، محاسبه تاج‌بارش، ساقاب و باران‌ربایی درختان انار شش ساله (فاصله کاشت 3×5/2 متر) رقم ملس ترش ساوه، در شهرستان ساوه با اقلیم ‌خشک از دی ماه 1393 لغایت دی ماه 1394 بود. برای اندازه‌گیری مقدار باران، از 10 باران‌سنج و برای اندازه‌گیری تاج‌بارش 50 باران‌سنج (در یک قطعه‌نمونه 500 متر مربعی) استفاده شد و متوسط ساقاب 9 درخت به‌عنوان متوسط ساقاب درختان در نظر گرفته شد. در این مطالعه 46 رخداد بارندگی با مقدار تجمعی 1/159 میلی‌متر اندازه‌گیری شد که بیشترین، کمترین و متوسط بارندگی به ترتیب 8/11، 5/0 و 5/3 میلی‌متر ثبت شد. در کل دوره‌ی پژوهش، سهم هر یک از مقادیر تاج‌بارش، ساقاب و باران‌ربایی از بارش به‌ترتیب 4/65، 7/4 و 9/29 درصد بدست آمد. در دوره-ی برگ‌دار (1 اردییهشت تا 30 آبان) این اعداد به ترتیب 1/62، 9/2 و 0/35 درصد و در دوره‌ی بی‌برگی به ترتیب 5/67، 8/5 و 7/26 درصد حاصل شدند. در کلیه‌ی سنجه‌های زمانی مورد بررسی، بهترین رابطه‌ی برازش داده شده بین مقدار باران و درصد نسبی تاج-بارش: لگاریتمی مثبت، درصد نسبی ساقاب: چندجمله‌ای مثبت و درصد نسبی باران‌ربایی: توانی منفی مشاهده شد. از آن‌جایی که در اقالیم خشک و نیمه‌خشک، اصلی‌ترین و اقتصادی‌ترین راه تامین آب مورد نیاز گیاهان، باران است، بنابراین لازم است بیش‌ترین بهره-وری ممکن را از آب باران داشته باشیم.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Rainfall Partitioning into Throughfall, Stemflow, and Interception of Pomegranate and its Importance in Ecohydrology

نویسندگان [English]

  • L. Hakimi 1
  • M. Sadeghi 2
  • E. khosropour 3
1 Assistant Professor of Horticulture, College of Agriculture, Saveh Branch, Islamic Azad University, Saveh, Iran.
2 PhD Candidate, Forest Ecohydrology, Department of Forestry and Forest Economics, University of Tehran, Iran.
3 PhD, Department of Forestry and Forest Economics, University of Tehran, Iran
چکیده [English]

Computing of rainfall partitioning into throughfall, stemflow, and interception are new discussions in ecohydrology and water resources studies of horticulture. The aim of this research was to compute of throughfall, stemflow, and interception of Malas-e-Torsh-e-Saveh pomegranate 6-years old (plant spacing 2.5×3 m) during January 2015 to Dec 2015 in Saveh city with an arid climate. To measure gross rainfall and throughfall, 10 and 50 manual rain-gauges (in a plot with an area was 500 m2) were used, respectively, and stemflow was measured using average of 9 individual trees equaled to the stemflow amount of trees. A total of 46 rainfall events were measured (cumulative: 159.1 mm) over the study period and rainfall magnitude varied from 0.5 to 11.8 mm with average of 3.5 mm. Over the measurement period, the cumulative percentage of throughfall, stemflow, and interception were 65.4, 4.7, and 29.0%, respectively. During the leafed period (21 April to 21 November), the corresponding values were 62.1, 2.9, and 35.0% vs. 67.5, 5.8, and 26.7% during the leafless period. In the overall time scales, the most suitable relationship between gross rainfall and rational throughfall percentage, rational stemflow percentage, and rational interception percentage were observed as positive logarithmic, positive polynomial, and negative power, respectively. Since in the arid and semiarid climates, the most economical and main way to supply water of plants are gross rainfall, therefore, it is necessary to have the highest possible efficiency from rain water.

کلیدواژه‌ها [English]

  • Arid climate
  • Leafed period
  • Leafless period
  • Malas-e-Torsh-e-Saveh pomegranate
  • Saveh
Aboal JR, Jiménez MS, Morales D, Hernández M (1999) Rainfall interception in laurel forest in the Canary Islands. Agricultural and Forest Meteorology, 97:73-86
Agusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science, 59:233-253
Alva AK, Prakash O, Fares A, Hornsby AG (1999) Distribution of rainfall and soil moisture content in the soil profile under citrus tree canopy and the dripline. Irrigation Science, 18(3):109-115
Asadzadeh F, Kaki M, Shakiba S (2017) Trends analysis of reference evapotranspiration in the synoptic sites of Kurdistan province Using Spearman’s test. Iran-Water Resources Research, 13(1):216-222 (In Persian)
Attarod P, Kheirkhah F, Khalighi Sigaroodi S, Sadeghi SMM (2015a) Sensitivity of reference evapotranspiration to global warming in the Caspian region, north of Iran. Journal of Agricultural Science and Technology, 17(4):869-883
Attarod P, Sadeghi SMM, Pypker TG, Bagheri H, Bagheri M, Bayramzadeh V (2015b) Needle-leaved trees impacts on rainfall interception and canopy storage capacity in an arid environment. New Forests, 46:339-355
Attarod P, Rostami F, Dolatshahi A, Sadeghi SMM, Zahedi Amiri G, Bayramzadeh V (2016) Do changes in meteorological parameters and evapotranspiration affect declining oak forests of Iran? Journal of Forest Science, 62(12):553-561
Bakhtiari B, Mohebi Dehghani A, Qaderi K (2016) Estimation of daily reference evapotranspiration with limited meteorological data in selected Iran’s semi-arid climates. Iran-Water Resources Research, 11(3):131-144 (In Persian)
Baltas E (2007) Spatial distribution of climatic indices in northern Greece. Meteorological Applications, 14:69-78
Cao Y, Huang ZG, Zheng H, Ouyang ZY (2007) Variation characteristics of throughfall in citrus orchard. Advance in Water Science, 18(6):853
Castro G, Romero P, Gómez JA, Fereres E (2006) Rainfall redistribution beneath an olive orchard. Agricultural Water Management, 86(3):249-258
De Miranda R, Calheiros A, Butler DR (1986) Interception of rainfall in a hedgerow apple orchard. Journal of Hydrology, 87(3-4):245-253
De Oliveira Leite J, Valle RR (1990) Nutrient cycling in the cacao ecosystem: rain and throughfall as nutrient sources for the soil and the cacao tree. Agriculture, Ecosystem, and Environment, 32(1-2):143-154
Dunkerley D (2000) Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies. Hydrological Processes 14:669-678
Farsadnia F, Zahmati S, Ghahreman B, Moghaddam Nia A (2016) Using unsupervised estimator technique to predict reference crop evapotranspiration. Iran-Water Resources Research, 11(3):31-42 (In Persian)
Ghamarnia H, Ghoamian SM, Kamali N (2017) Estimating of crop coefficient and actual evapotranspiration of corn using Landsat8 images (case study: Sarab Nilufar Plain in Kermanshah). Iran-Water Resources Research, 12(4):93-107 (In Persian)
Gómez JA, Giraldez JV, Feres E (2001) Rainfall interception by olive trees in relation to leaf area. Agricultural Water Management, 49:65-76
Herbst M, Rosier PTW, McNeil DD, Harding RJ, Gowing DJ (2008) Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest. Agricultural and Forest Meteorology, 148:1655-1667
Khan MA (1999) The hydrological response and nutrient loss of certain horticultural ecosystems. Journal of Arid Environments, 42(4):281-289
Levia DF, Frost EE (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. Journal of Hydrology, 274:1-29
Li YC, Alva AK, Calvert DV, Zhang M (1997) Stem flow, throughfall, and Canopy interception of rainfall by citrus tree canopies. Hortscience, 32(6):1059-1060
Livesley SJ, Baudinette B, Glover D (2014) Rainfall interception and stem flow by eucalypt street trees – The impacts of canopy density and bark type. Urban Forestry Urban Greening, 13:192-197
Ludwig JA, Wilcox BP, Breshears DD, Tongway DJ, Imeson AC (2005) Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes. Ecology, 86(2):288-297
Murray SJ (2014) Trends in 20th century global rainfall interception as simulated by a dynamic global vegetation model: implications for global water resources. Ecohydrology, 7(1):102-114
Muzylo F, Llorens P, Domingo F (2012) Rainfall partitioning in a deciduous forest plot in leafed and leafless periods. Ecohydrology, 5:759-767
Nanko K, Onda Y, Ito A, Moriwaki H (2011) Spatial variability of throughfall under a single tree: Experimental study of rainfall amount, raindrops, and kinetic energy. Agricultural and Forest Meteorology, 151:1173-1182
Sadeghi SMM (2016) Sustainable management of water resources in forest ecosystems with the Ecohydrology knowledge. Sonbole, 248:96-97 (In Persian)
Sadeghi SMM, Attarod P (2015) Estimation of the canopy storage capacity and free throughfall coefficient by a Pinus eldarica afforestation using the regression-based methods. Iranian Journal of Forest, 7(1):1-16 (In Persian)
Sadeghi SMM, Attarod P, Pypker TG, Dunkerley D (2014) Is canopy interception increased in semiarid tree plantations? Evidence from a field investigation in Tehran, Iran. Turkish Journal of Agriculture and Forestry, 38:792-806
Sadeghi SMM, Attarod P, Pypker TG (2015a) Differences in rainfall interception duringthe growing and non-growing seasons in a Fraxinus rotundifolia Mill. Plantation located in asemiarid climate. Journal of Agricultural Science and Technology, 17:145-156
Sadeghi SMM, Attarod P, Van Stan JT, Pypker TG, Dunkerley D (2015b) Efficiency of the reformulated Gash's interception model in semiarid afforestations. Agricultural and Forest Meteorology, 201:76-85
Sadeghi SMM, Attarod P, Van Stan JT, Pypker TG (2016) The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran. Science of the Total Environment, 568:845-855
Sadeghi SMM, Van Stan JT, Pypker TG, Friesen J (2017) Canopy hydrometeorological dynamics across a chronosequence of a globally invasive species, Ailanthus altissima (Mill., tree of heaven). Agricultural and Forest Meteorology, 240:10-17
Shabani A, Sepaskhah AR, Bahrami M, Razzaghi F (2017) Combined application of artificial neural network and computational methods to estimate the reference evapotranspiration. Iran-Water Resources Research, 13(1):152-162 (In Persian)
Shamsai A, Forghani A (2011) Conjunctive use of surface and ground water resources in arid regions. Iran-Water Resources Research, 7(2):26-36 (In Persian)
Tafazoli M, Attarod P, Hojjati SM, Tafazoli M (2015) Rainfall interception by Quercus castaneifolia, Acer velutium, and Pinus brutia plantations within the growing season in Darabkola Forest of Mazandaran Province. Iranian Journal of Forest and Poplar Research, 23(1):1-12 (In Persian)
Van Stan JT, Sadeghi SMM, Pypker TG, Friesen J (2016) Chronological changes in canopy ecohydrological dynamics may aid invasion of a globally invasive species (Ailanthus altissima Mill. tree of heaven). In: Proc. American Geophysical Union, Fall General Assembly (AGU-2016), 12-16 December, San Francisco, USA, 1
Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stress that affect plat water status. Plant Journal, 45:523-539
Xiao Q, McPherson EG (2011) Rainfall interception of three trees in Oakland, California. Urban Ecosystems, 14:755-769