پیش‌بینی تراز سطح آب مخزن سد با استفاده از روش ماشین هوشمند نظارت شده، مطالعه موردی: سد امیرکبیر کرج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار /گروه مهندسی عمران، دانشکده فنی، دانشگاه شهرکرد

2 دانش‌آموخته کارشناسی ارشد / مهندسی منابع آب و سازه های هیدرولیکی، دانشکده فنی، دانشگاه شهرکرد.

چکیده

پیش‌بینی صحیح تغییرات تراز سطح آب مخازن به عنوان یکی از مسائل مهم جهت مدیریت، طراحی، بهره‌برداری از سدها و تأمین نیازهای آبی مطرح می‌باشد. در این مطالعه بر پایه پنج مدل نرم رگرسیون بردار پشتیبان (SVR)، سیستم استنتاج عصبی-فازی تطبیقی (ANFIS)، شبکه عصبی (ANN)، شبکه عصبی شعاعی (RBFNN) و شبکه عصبی مبتنی بر رگرسیون عمومی (GRNN) و استفاده تلفیقی از نتایج آن‌ها به عنوان ورودی به یکی از این پنج مدل، ساختاری تحت عنوان ماشین هوشمند نظارت شده (SICM) جهت برآورد تراز سطح آب ماهانه مخزن سد امیرکبیر کرج پیشنهاد گردید. داده‌های مورد استفاده شامل تراز سطح آب، بارندگی، تبخیر، حجم ورودی و خروجی از مخزن سد بوده و ارزیابی مدل‌های مذکور توسط نه شاخص خطا صورت گرفت و با استفاده از روش تصمیم‌گیرنده ویکور، بهترین مدل از میان مدل‌های مذکور انتخاب گردید. پس از انجام بررسی‌های لازم در میان مدل‌های نرم مورد استفاده، مدل ANN با ضریب راندمان نش و میانگین مجذور خطای به ترتیب 89/0 و 37/23 متر مربع به عنوان بهترین مدل شناخته شد. نتایج بدست آمده از رویکرد پیشنهادی نشان می‌دهد که مدل نظارت شده (هیبریدی) شبکه عصبی (SICM-ANN) با افزایش ضریب راندمان نش به 94/0 و کاهش میانگین مجذور خطا به 85/12 متر مربع (بیش از 45 درصد کاهش) توانسته عملکرد بالایی را در پیش‌بینی صحیح میزان تراز سطح آب ماهانه مخزن سد کرج ارائه نماید. بر این اساس استفاده هیبریدی از مدل‌های نرم می‌تواند در کاهش چشمگیر خطای پیش‌بینی تراز سطح آب نسبت به مدل‌های منفرد به طور مؤثری بکار گرفته شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Reservoir Water Level Prediction Using Supervised Intelligent Committee Machine Method, Case Study: Karaj Amirkabir Dam

نویسندگان [English]

  • M. Mohammad Rezapour Tabari 1
  • M.M. Malekpour Shahraki 2
1 Associate Professor, Deptartment of Engineering, Shahrekord University, Shahrekord, Iran.
2 M.Sc. Graduate of Civil Engineering - Hydraulic Structures, Shahrekord University, Shahrekord, Iran
چکیده [English]

The proper prediction of reservoirs water level variation is considered as one of the important issues for management, designing, operation of dams and water supply. In this study, based on five soft models such as support vector regression (SVR), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), radial basis function neural network (RBFNN), generalized regression neural network (GRNN) and the combined use of their results as input to one of these five models, a new structure called supervised intelligent committee machine (SICM) was proposed to predict the monthly reservoir water level of Karaj Amirkabir dam. The data used in this paper are water level, precipitation, evaporation, inflow and outflow of the dam. The evaluation of these models was done by nine error indexes and also the best model between them was selected using vikor decision maker method. After performing the necessary evaluations among the used soft models, the ANN known as the best model with nash–sutcliffe efficiency (NS) and mean square error (MSE) equal to 0.89 and 23.37 square meters, respectively. The results of the proposed approach are shown that the supervised (hybrid) neural network (SICM-ANN) has been able to provide high performance in predicting the monthly reservoir water level in Karaj dam with increasing the NS coefficient to 0.94 and decreasing the MSE index to 12.85 square meters (more than 45 percent decrease). Accordingly, hybrid use of soft models can be effectively applied to significantly reduce the predicted error of water level rather than single models.

کلیدواژه‌ها [English]

  • prediction
  • Reservoir water level
  • Karaj Amirkabir dam
  • Supervised intelligent committee machine
  • Soft models
Shamim MA, Hassan M, Ahmad S, Zeeshan M (2016) A comparison of artificial1 neural networks (ANN) and local linear regression (LLR) techniques for predicting monthly reservoir levels. KSCE Journal of Civil Engineering 20(2):971-977
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000) Artificial neural networks in hydrology I: Preliminary concepts. Journal of Hydrology Engineering 5:115-123
Barzegar R, Fijani E, Asghari Moghaddam A, Tziritis E (2017) Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models. Science of the Total Environment 599-600:20-31
Broomhead D, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex System 2:321-355
Buyukyildiz M, Tezel G, Yilmaz V (2014) Estimation of the change in lake water level by artificial intelligence methods. Water Resources Management 28(13):4747-4763
Chen CH, Lin ZS (2006) A committee machine with empirical formulas for permeability prediction. Computer Geo-Science 32:485-496
Csabragi A, Molnar S, Tanos P, Kovacs J (2017) Application of artificial neural networks to the forecasting of dissolved oxygen content in the Hungarian section of the river Danube. Ecological Engineering 100:63-72
Das M, Ghosh SK, Chowdary VM, Saikrishnaveni A, Sharma RK (2016) A probabilistic nonlinear model for forecasting daily water level in reservoir. Water Resources Management 30(9):3107-3122
Elbisy MS (2015) Support vector machine and regression analysis to predict the field hydraulic conductivity of sandy soil. KSCE Journal of Civil Engineering 19(7):2307-2316
El-Diasty M, Al-Harbi S, Pagiatakis S (2018) Hybrid harmonic analysis and wavelet network model for sea water level prediction. Applied Ocean Research 70:14-21
Fijani E, Nadiri A, Moghaddam AA, Tsai FTC, Dixon B (2013) Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh– Bonab plain aquifer, Iran. Journal of Hydrology 503:89-100
Gavili S, Javadi S, Banihabib ME, Sanikhani H (2018) Comparison of intelligent models to predict water level fluctuations of Zarival lake using groundwater level. Iran-Water Resources Research 14(3):268-277 (In Persian)
Ghorbani MA, Azani A, Mahmoudi Vanolya S (2015) Rainfall-runoff modeling using hybrid intelligent models. Iran-Water Resources Research 11(2):146-150 (In Persian)
Hanting Z, Hao W, Yufei C (2013) Application of osculating value method based on entropy weight in the groundwater quality evaluation. International Journal of Environmental Engineering Research 2(2):45-49
Hipni A, El-shafie A, Najah A, Abdul Karim O, Hussain A, Mukhlisin M (2013) Daily forecasting of dam water levels: Comparing a Support Vector Machine (SVM) model with Adaptive Neuro Fuzzy Inference System (ANFIS). Water Resources Management 27:3803-3823
Kisi O, Shiri J, Karimi S, Shamshirband S, Motamedi S, Petkovic D, Hashim R (2015) A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm. Applied Mathematics and Computation 270:731-743
Kisi O, Shiri J, Nikoofar B (2012) Forecasting daily lake levels using artificial intelligence approaches. Computers and Geosciences 41:169-180
Labani MM, Kadkhodaie-Ilkhchi A, Salahshoor K (2010) Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: A case study from the Iranian part of the south pars gas field, Persian Gulf Basin. J Pet Science Engineering 72:175-185
Reazpor Tabari MM (2016) Prediction of river runoff using fuzzy theory and direct search optimization algorithm coupled model. Arab J Science Engineering Springer 41(10):4039-4051
Rezapour Tabari MM, Mazak Mari M (2015) A simulation-optimization approach for reducing seepage rate in water conveyance canals. Iran-Water Resources Research 11(2):17-30 (In Persian)
Mwale FD, Adeloye AJ, Rustum R (2014) Application of self-organising maps and multi-layer perceptron-artificial neural networks for stream flow and water level forecasting in data-poor catchments: The case of the lower shire floodplain, Malawi. Hydrology Research 45(6):838-854
Nadiri A, Gharekhani M, Khatibi R, Sadeghfam S, Asghari Moghaddam A (2017a) Groundwater vulnerability indices conditioned by supervised intelligence committee machine (SICM). Science of the Total Environment 574:691-706
Nadiri AA, Taherkhani Z, Sadeghi Aghdam F (2017b) Prediction of groundwater level of Bostan Abad using combining artificial intelligence models. Iran-Water Resources Research 13(3):43-55 (In Persian)
Opricovic S, Tzeng GH (2004) The compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research 156(2):445-455
Opricovic S, Tzeng GH (2007) Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research 178:514-529
Rumelhart DE, McClelland JL and the PDP Research Group (1986) Parallel distributed processing: Explorations in the microstructure of cognition. MIT Press, Cambridge, Massachusetts, USA, 516p
Sammen SS, Mohamed TA, Ghazali AH, El-Shafie A, Sidek LM (2017) Generalized regression neural network for prediction of peak outflow from dam breach. Water Resources Management 31(1):549-562
Shirzad A, Tabesh M, Farmani R (2014) A comparison between performance of support vector regression and artificial neural network in prediction of pipe burst rate in water distribution networks. KSCE Journal of Civil Engineering 18(4):941-948
Soleymani SA, Goudarzi S, Anisi MH, Hassan WH, Idris MYI, Shamshirband S, Mohamednoor N, Ahmedy I (2016) A novel method to water level prediction using RBF and FFA. Water Resources Management 30(9):3265-3283
Specht DF (1991) A general regression neural network. IEEE Trans. Neural Network 2:568-576
Tayfur G, Nadiri AA, Moghadam AA (2014) Supervised intelligent committee machine method for hydraulic conductivity estimation. Water Resources Management 28(4):1173-1184
Valizadeh N, El-Shafie A (2013) Forecasting the level of reservoirs using multiple input fuzzification in ANFIS. Water Resources Management 27(9):3319-3331
Vapnik VN (1998) Statistical Learning Theory. John Wiley, New York
Yadav B, Eliza Kh (2017) A hybrid wavelet-support vector machine model for prediction of lake water level fluctuations using hydro-meteorological data. Measurement 103:294-301