بررسی اثر روشهای مختلف برآورد فاکتورتوپوگرافی بر تخمین میزان رسوب خروجی از حوضه به روش RUSLE (مطالعه موردی: حوضه آبریز باراجین، قزوین)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هئیت علمی/ گروه مهندسی آب دانشگاه بین المللی خمینی (ره)، قزوین

2 دانشجوی کارشناسی ارشد/ مهندسی منابع آب، دانشگاه بین المللی امام خمینی (ره)، قزوین

چکیده

یکی از مهم‌ترین روش‌های محاسبه فرسایش در سطح حوضه و رسوب خروجی از آن استفاده از مدل RUSLE می‌باشد. بررسی تحقیقات گذشته در زمینه کارائی این مدل حاکی از اهمیت بسیار بالای فاکتور توپوگرافی که خود متشکل از دو عامل شیب و طول شیب می‌باشد، دارد. تاکنون روابط متعددی برای محاسبه این فاکتور توسعه داده شده است که انتخاب مناسب‌ترین رابطه برای تخمین آن موجب ایجاد سردرگمی برای محققین می‌گردد. لذا پژوهش حاضر با هدف بررسی روشهای مختلف برآورد فاکتور توپوگرافی و نیز اثر توان تفکیک مدلهای رقومی ارتفاعی (DEMs) بر مقدار رسوب محاسبه شده توسط مدل RUSLE در حوضه آبریز باراجین به انجام رسیده است. همچنین لازم به ذکر است که برای ارزیابی مدل مذکور در تخمین رسوب خروجی از حوضه، از منحنی سنجه رسوب بدست آمده از داده‌های رسوب مشاهداتی در ایستگاه هیدرومتری باراجین استفاده شده است. نتایج حاکی از آن است که استفاده از روابط مختلف، خطایی در حدود 2 تا بیش از 400 درصد در مقدار رسوب خروجی از حوضه ایجاد می‌نماید. همچنین نتایج نشان داد که روابط ارائه شده توسط McCoolو همکاران و Moore and Burch با دارا بودن خطای نسبی کمتر از 10 درصد بهترین روابط برای محاسبه فاکتور توپوگرافی در حوضه‌های پرشیب می‌باشند. ارزیابی اثر توان تفکیک DEM نیز حاکی از تاثیر قابل توجه آن بر مقدار رسوب خروجی از حوضه می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating the effect of different methods for calculating topographic factor on sediment delivery rate based on RUSLE model (Case study: Barajin catchment, Qazvin)

نویسندگان [English]

  • A. Azizian 1
  • S. Kohi 2
1 Assistant Professor, Water engineering Dept., Imam Khomeini International University, Qazvin, Iran
2 MSc in Water Resources Engineering, Water engineering Dept., Imam Khomeini International University, Qazvin, Iran.
چکیده [English]

One of the most widely used method for estimation of erosion over the catchment and the sediment delivery from the catchment is revised universal soil loss equation (RUSLE). Several studies have been carried on the importance of topographic factor (LS) which includes slope steepness and slope length factors. Over the past decades, different methods have been developed for calculation of topographic factor and hence, choosing the best one is a confusing and challenging issue. Moreover, by increasing of geographic information system (GIS) application in hydrological modeling, mathematical calculations on grid-based datasets can easily be done in GIS environ. Due to depending on grid-based datasets, RUSLE model is influenced by several factors which among them, the effect of DEM resolution and the method of LS estimation are the most important ones. This research addresses the effects of all important factors on sediment delivery load at the outlet of the Barajin catchment by coupling RUSLE model and GIS environ. Also, in order to evaluate the efficiency of this model, mean annual sediment delivery load is calculated by analyzing discharge-sediment curve and observed data at Barajin hydrometric station between 1987 and 2015. Findings show that using different methods for estimation of LS factor without considering their limitations leads to a significant relative error (RE) in the calculation of sediment delivery load. Furthermore, McCool et al equation, due to a RE of lower than 10% in estimating the sediment delivery load, is the best method for calculation of LS factor.

کلیدواژه‌ها [English]

  • RSULE
  • Erosion
  • Sediment
  • DEM Resolution
  • Topographic factor
Alatorre LC, Beguería S, Lana-Renault N, et al. (2012) Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model. Hydrology and Earth System Science 16:1321-1334
ArabKhedri M, HakimKhani S, NikKami D (2003) Comparison of several statistical methods for estimating the suspended load of a zone with snow and rainy regimes. Ministry of Agricultural Jihad, Soil Conservation and Watershed Management Research Institute, Final Report of Research Project (In Persian)
Azizian A, Shokoohi AR (2014) Evaluation the effect of DEM resolution and the stream delineation threshold on the results of the precipitation-runoff geomorphological kinematic wave-based model (KW-GIUH). Journal of Water S.A 41(1):61-70
Böhner J, Selige T (2006) Spatial prediction of soil attributes using terrain analysis and climate regionalization. Göttinger Geographische Abhandlungen 115:13-28
Butt MJ, Waqas A, Mahmood R, CSHRG (2010) The combined effect of vegetation and soil erosion in the water resource management. Water Resources Management 24:3701-3714
Desmet PJJ, Govers G (1996) A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil Water Conserv 51:427-433
Edeso JM, Marauri P, Merino A (1995) Aplicaciones de los sistemas de información geográfica en los estudios geomorfológicos y medioambientales: el mapa sintético de riesgos potenciales y el mapa de erosión. Lurralde: investigación y espacio 18:257-291
Edwards K (1993) Soil erosion and conservation in Australia. in: Pimentel, D (Ed), World Soil Erosion and Conservation, Cambridge
Fernandez C, Wu JQ, Mccool DK, Stockle CO (2003) Estimating water erosion and sediment yield with GIS , RUSLE , and SEDD. Journal of Soil and Water Conservation 58:128-136
Ferro V, Giordano G, Lovino M (1991) Isoerosivity and erosion risk map for Sicily. Hydrological Sciences Journal 36:549-564
Ganasri BP, Ramesh H (2016) Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin. Geoscience Frontiers 7:953-961
Gandasasmita K (1987) Contribution to geo-information system operation for prediction of erosion applied to a large catchment in South Sumatra, Indonesia. International Institute for Aerospace Survey and Earth Sciences
Kogan F (1993) United States droughts of late 1980’s as seen by NOAA polar orbiting satellites. International Geoscience and Remote Sensing Symposium
Liu B, Nearing M, Risse L (1994) Slope gradient effects on soil loss for steep slopes. Transactions of the ASAE 37:1835-1840
Liu B, Xie Y, Zhang K (2001) Soil loss prediction model. China Science and Technology Press, Beijing (in Chinese)
Maidment DR (1991) GIS and hydrological modelling. In Proc. of First Intl. Symposium/ Workshop on GIS and Environm ental Modelling (ed. by M.F. Goodchild, B.O. Parks and L.T.Steyaert), Bouldex, Colara do, Sept., 1991, Oxford University Press, New York
McCool D, Foster G, Mutchler C, Meyer L (1989) Revised slope length factor for the universal soil loss equation. Transactions of the ASAE 32:1571-1576
Moore ID, Burch GJ (1986a) Physical basis of the length-slope factor in the universal soil loss equation. Soil Science Society of America Journal 50:1294-1298
Moore ID, Burch GJ (1986b) Modeling erosion and deposition, Topographic effects. Trans ASAE 29:1624–1630
Moore ID, Grayson RB, Landson AR (1991) Digital terrain modeling, a review of hydrological, geomorphological and biological applications. Hydrological Processes 5:3-30
Morgan RPC, Nearing MA (2011) The future role of information technology in erosion modeling. Hand Book of Erosion Modeling
Mutua BM, Klik A, Loiskandl W (2006) Modelling soil erosion and sediment yield at a catchment scale: the case of Masinga catchment, Kenya. Land Degradation and Development 17:557-570
Porhemmat J, DomiriGanji M (2005) Analysis of the relationships of sediment production in hendigan hydrometer stations-Jarrahi. Third National Conference on Erosion and Sediment (In Persian)
Renard KG, Foster GR, Weesies GA, et al. (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). In: Agriculture Handbook No. 703. USDA, Washington DC
Renard KG, Freimund JR (1994) Using monthly precipitation data to estimate the R factor in the revised USLE. Journal of Hydrology 157:287-306
Rezaei P, Faridi P, Ghorbani M, Kazemi M (2014) Estimation of soil erosion using the RUSLE model and identification of the most effective factor in watershed Gabrik-South East of Hormozgan Province. Journal of Quantitative Geomorphological Researches 3 (In Persian)
Saha SK (2003) Water and wind induced soil erosion assessment and monitoring using remote sensing and GIS. Satellite Remote Sensing and GIS Applications in Agricultural Meteorology 315-330
Shokoohi AR, Beheshti S (2014) Using a geomorphologic model based on power flow for zoning erosion and sedimentation in catchment areas. Iranian Journal of Soil and Water Research 45:509-518 (In Persian)
Tang Q, Xu Y, Bennett SJ, Li Y (2014) Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China. Environmental Earth Sciences 73:1715-1724
Thomas J, Joseph S, Thrivikramji KP (2018) Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geoscience Frontiers 9:893-906
Uddin K, Murthy MSR, Wahid SM, Matin MA (2016) Estimation of soil erosion dynamics in the koshi basin using GIS and remote sensing to assess priority areas for conservation. PLoS ONE 11(3):e0150494, https://doi.org/10.1371/journal.pone.0150494
Van der Knijff J, Jones RJA, Montanarella L (1999) Soil erosion risk assessment in Italy. European Soil Bureau, European Commission
Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. In: Agriculture Handbook No. 537.USDA, Washington, DC.
Zhang H, Wei J, Yang Q, et al. (2017) An improved method for calculating slope length (λ) and the LS parameters of the revised universal soil loss equation for large watersheds. Geoderma 308:36-45