پایش داده‌های جریان در شبکه‌های توزیع آب با استفاده از روش‌های خوشه‌بندی مبتنی بر چگالی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مهندسی عمران/ آب، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی تهران.

2 استادیار/ دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی تهران.

3 دانشجوی کارشناسی ارشد مهندسی عمران/ آب و سازه‌های هیدرولیکی، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی تهران.

چکیده

تشخیص داده‌‌‌های نویز(پرت یا غیرعادی) از داده‌های جریان در شبکه‌های توزیع آب در مرحله آماده‌سازی و پیش‌پردازش داده‌ها برای دستیابی به داده‌های تاریخی قابل اعتماد انجام می‌گیرد؛ که در بهبود روش‌های ارزیابی و مدیریت نشت و بهره‌برداری مؤثر از شبکه، مهم و ضروری است. هدف از ارائه این مقاله توسعه یک متدولوژی جدید بر مبنای روش‌های یادگیری بدون نظارت، جهت شناسایی داده‌های پرت یا غیرعادی در یک مجموعه داده‌های جریان در شبکه‌های توزیع آب می‌باشد. متدولوژی توسعه داده شده شامل مراحل 1- جمع‌آوری داده‌های مورد نیاز، 2- صحت‌سنجی و نرمال‌سازی داده‌ها و 3- شناسایی و کشف داده‌های پرت یا غیرعادی با استفاده از الگوریتم خوشه‌بندی مکانی مبتنی بر چگالیِ مقاوم در مقابلِ نویز (DBSCAN) می‌باشد. متدولوژی پیشنهادی برای داده‌های جریان ورودی به یک منطقه در شبکه توزیع آب شهری تهران با تواتر زمانی برداشت داده 15 دقیقه برای سال 1394 به کار برده شد. نتایج نشان داد که متدولوژی توسعه داده شده قابلیت شناسایی داده‌های پرت ناشی از انواع شکستگی‌ها و مصارف مجاز غیرمعمول نظیر مصارف ناشی از تغییر در الگوی مصرفی جمعیت یا مصارف مجاز غیرعادی را دارد. از اینرو این متدولوژی را می‌توان به عنوان یک ابزار کاربردی و انعطاف‌پذیر برای پایش داده‌های جریان و شناسایی و حذف انواع داده‌های پرت از آنها مورد استفاده قرار داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Flow Data Monitoring in Water Distribution Networks Using Density-Based Clustering Methods

نویسندگان [English]

  • Iman Moslehi 1
  • Mohammadreza Jalili-Ghazizadeh 2
  • Ehsan Yousefi Khoshqalb 3
1 PhD Student in Civil Engineering, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
2 Assistant Professor, Department of Water and Wastewater, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
3 MSc Student in Civil Engineering, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
چکیده [English]

Anomaly or outlier detection of flow data in water distribution networks (WDNs) is implemented in data preparation and prepossessing step to achieve reliable historical data; it is important to improve the leakage assessment and management methods and the operations of the network efficiently. The main objective of this paper is to develop a new methodology based on unsupervised learning methods for anomaly or outlier detection in a flow data set in WDNs. The developed methodology includes three steps 1- required data acquisition, 2- data validation and normalization, and 3- anomaly or outlier detection using the density-based spatial clustering of application with noise (DBSCAN) algorithm. The proposed methodology is applied for inflow data into an area in Tehran's urban water distribution network with 15-min sampling intervals for 1394. The results showed that the developed methodology is capable to the detection anomalies due to different type of pipe breaks and unusual legitimate consumption such as water usage due to changes in water consumption pattern or unauthorized consumption. Therefore, this methodology can be used as an applicable and flexible tool for monitoring flow data and detecting and eliminating of different types of outliers from them.

کلیدواژه‌ها [English]

  • outlier
  • Density-Based Clustering
  • DBSCAN Algorithm
  • Flow Data
  • Water Distribution Network
AL-Washali T, Sharma S, AL-Nozaily F, Water MH- and 2019 U (2019) Modelling the leakage rate and reduction using minimum night flow analysis in an intermittent supply system. Water (MDPI) 11(1):1-15
Alkasseh JMA, Adlan MN, Abustan I, Aziz HA and Hanif ABM (2013) Applying minimum night flow to estimate water loss using statistical modeling: A case study in Kinta Valley, Malaysia. Journal of Water Resources Management 27(5):1439-1455
Buchberger SG and Nadimpalli G (2004) Leak estimation in water distribution systems by statistical analysis of flow readings. Journal of Water Resources Planning and Management 130(4):321-329
Cassisi C, Ferro A, Giugno R, Pigola G and Pulvirenti A (2013) Enhancing density-based clustering: Parameter reduction and outlier detection. Journal of Information Systems 38(3):317-330
Chandola V, Banerjee A and Kumar V (2009) Anomaly detection: A survey. Journal of ACM Computing Surveys 41(3):1-58
Daszykowski M, Walczak B, and Massart D (2001) Looking for natural patterns in data: Part 1. Density-based approach. Journal of Chemometrics and Intelligent Laboratory Systems 56(2):83-92
De Oliveira DP, Garrett JH and Soibelman L (2011) A density-based spatial clustering approach for defining local indicators of drinking water distribution pipe breakage. Journal of Advanced Engineering Informatics 25(2):380-389
Ester M, Hans-Peter K, Jorg S, and Xiaowei X (1996) Density-based clustering algorithms for discovering clusters. In: Proc. of The Second International Conference on Knowledge Discovery and Data Mining (KDD-96) 2:226-231
Farley M and Trow S (2005) Losses in water distribution networks: a practitioner’s guide to assessment, monitoring and control. London: IWA Publishing, 296p
Han J, Kamber M, and Tung AKHH (2001) Spatial clustering methods in data mining: A survey. in: Geographic Data Mining and Knowledge Discovery, Research Monographs in GIS, 1-29
Hawkins DM (1980) Identification of outliers. Chapman and Hall, 194p
Jain AK (2010) Data clustering: 50 years beyond K-means. Journal of Pattern recognition letters. Elsevier 31(8):651-666
Jain AK, Murty MN, and Flynn PJ (1999) Data clustering: a review. Journal of ACM computing surveys 31(3):264-323
Li R, Huang H, Xin K, and Tao T (2014) A review of methods for burst/leakage detection and location in water distribution systems. Journal of Water Science and Technology: Water Supply 15(3):429-441
Liu P, Zhou D, and Wu N (2007) VDBSCAN: Varied Density Based Spatial Clustering of Applications with Noise. In: Proc. of 2007 International Conference on Service Systems and Service Management. Chengdu, China: IEEE, 1-4
Loureiro D, Amado C, Martins A, Vitorino D, Mamade A, and Coelho ST (2016) Water distribution systems flow monitoring and anomalous event detection: A practical approach. Journal of Urban Water Journal 13(3):242-252
Lv Y, Ma T, Tang M, Cao J, Tian Y, Al-Dhelaan A and Al-Rodhaan M (2016) An efficient and scalable density-based clustering algorithm for datasets with complex structures. Journal of Neurocomputing 171:9-22
Mazzolani G, Berardi L, Laucelli D, Simone A, Martino R, and Giustolisi O (2017) Estimating leakages in water distribution networks based only on inlet flow data. Journal of Water Resources Planning and Management 143(6):1-11
Mutikanga H, Sharma SK, and Vairavamoorthy K (2013) Methods and tools for managing losses in water distribution systems. Journal of Water Resources Planning and Management (April):166-174
Oliveira D, Garrett JH, and Soibelman L (2009) Spatial clustering analysis of water main break events. Journal of Computing in Civil Engineering 338-347
Puust R, Kapelan Z, Savic DA, and Koppel T (2010) A review of methods for leakage management in pipe networks. Urban Water Journal 7(1):25-45
Sander J, Ester M, Kriegel HP, and Xu X (1998) Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Journal of Data Mining and Knowledge Discovery 2(2):169-194
Schubert E, Sander J, Ester M, Kriegel HP, and Xu X (2017) DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. Journal of ACM Transactions on Database Systems 42(3):1-21
Soni N and Ganatra A (2012a) Comparative study of several Clustering Algorithms. International Journal of Advanced Computer Research 2(4):1-37
Soni N and Ganatra A (2012b) Categorization of several Clustering algorithms from different perspective: A review. International Journal of Advanced Research in Computer Science and Software Engineering 2(8):63-68
Sun J, Wang R, Wang X, Yang H, and Ping J (2014) Spatial cluster analysis of bursting pipes in water supply networks. Journal of Procedia Engineering 70:1610-1618
Thornton J, Sturm R, and Kunkel G (2008) Water loss control. McGraw Hill Professional, 700p