تحلیل اثربخشی سناریو های احیای دریاچه ارومیه با استفاده از شبیه‌سازی پویایی سیستم ها مبتنی بر مدل شکار و شکارچی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مدیریت منابع آب/ دانشکده عمران، دانشگاه تبریز.

2 استاد/دانشکده مهندسی عمران، دانشگاه تبریز و استاد پژوهشکده محیط‌زیست دانشگاه تبریز.

3 دانشجوی دکتری علوم زمین/ دانشگاه صنعتی استانبول.

4 استادیار/ دانشکده علوم انسانی، گروه جغرافیا و برنامه‌ریزی و آمایش سرزمین دانشگاه تربیت مدرس.

چکیده

در این مطالعه استخراج راهبردهای مدیریتی مدل شکار- شکارچی برای حوضه آبریز دریاچه ارومیه توسعه داده شده است. مزیت اصلی این مدل، تخصیص متعادل آب بین ذینفعان در راستای رسیدن دریاچه به شرایط پایدار یعنی تراز اکولوژیک است. با توجه به گسترش کشاورزی در شمال غرب ایران، بررسی راهکار های قابل اجرا و به روز کاهش آب مصرفی در بخش کشاورزی حائز اهمیت می باشد. در این تحقیق ابتدا یک مدل پویایی سیستم ها شامل یک نمودار ذخیره- جریان طراحی شده است که در آن دریاچه ارومیه به ‌عنوان بخش شکار و اراضی کشاورزی به ‌عنوان بخش شکارچی به حساب آمده اند. سپس با توجه به اثرات عوامل مختلف به ‌صورت پویا، به بررسی و تحلیل راهکارهای کاهش آب مصرفی کشاورزی پرداخته شده است. نتایج این مطالعه نشان می دهد که در بازه ی زمانی 2015 تا 2031 کاهش اراضی کشاورزی (یکپارچه سازی، کاهش تعداد کشاورزان و ...) به میزان 40 درصد، افزایش راندمان آبیاری کشاورزی (اصلاح الگوی کشت، مدرن سازی تجهیزات آبیاری، اصلاح روشهای آبیاری و ...) به میزان 21 درصد و کاهش مساحت دریاچه به میزان 20 درصد، به ترتیب باعث افزایش تراز آب دریاچه به میزان 7/1، 8/0 و 5/0 متر می شوند. با اعمال سناریو های مذکور به صورت یکجا و هم‌زمان تراز آب دریاچه به میزان 3/4 متر افزایش پیدا کرده و دریاچه به تراز اکولوژیک خود (1274 متر) خواهد رسید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Impacts of Restoration Scenarios for Urmia Lake Using Predator-Prey System Dynamics Model

نویسندگان [English]

  • Seyed ershad Barhagh 1
  • Mahdi Zarghami 2
  • Yusuf Alizade Govarchin Ghale 3
  • Mohammad Reza Shahbazbegian 4
1 M.Sc. Student, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran.
2 Professor, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran. and Professor, Institute of Environment, University of Tabriz.
3 Ph.D. Candidate, Climate and Marine Sciences Department, Earth System Sciences Program, Istanbul Technical University.
4 Assistant Professor, Faculty of Geography-Spatial planning, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

A system dynamic model is necessary to estimate the existing interactions between Urmia Lake and factors affecting it. In this study, the Predator-Prey model using system dynamics simulation has been developed for Urmia Lake Basin. The main advantage of this model is providing the balanced water allocation between stakeholders in order to have a sustainable water management system for the lake. Due to increasing the area of irrigated lands in the northwest of Iran, having an applicable and up-to-date method to reduce water consumption in agricultural part is unavoidable. A stock-flow model has been designed in this study, in which Urmia Lake and irrigated lands are considered as the prey and predator, respectively. Then, the effects of various factors on the water elevation fluctuations of the lake have been analyzed dynamically and the strategies for reducing the water consumption of agricultural part have been investigated carefully. The results of this study indicate that the reducing irrigated lands by 40%, improve irrigation efficiency by 21% and reducing the area of lake by 20% lead to increasing water level of the lake by 1.7, 0.8 and 0.5 meters, respectively. By applying these policies, the water level of the lake will increase about 4.3 meters and it will lead to better ecological condition.

کلیدواژه‌ها [English]

  • "Water allocation"
  • "Urmia Lake"
  • "Conflict Resolution"
  • "Predator-Prey"
  • "System Dynamics"
Alborzi A, Mirchi A, Moftakhari H, Mallakpour I, Alian S, Nazemi A, Hassanzadeh E, Mazdiyasn O, Ashraf S, Madani K, Norouzi H, Azarderakhsh M, Mehran A, Sadegh M, Castelletti A, and AghaKouchak A (2018) Climate- informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts. Journal of Environmental Research Letters 13(8):084010
Alizade Govarchin Ghale Y, Altunkaynak A, and Unal A (2018) Investigation anthropogenic impacts and climate factors on drying up of Urmia Lake using water budget and drought analysis. Journal of Water Resources Management 32(1):325–337
Alizade Govarchin Ghale Y, Baykara1 M, and Unal A (2017) Analysis of decadal land cover changes and salinization in Urmia Lake basin using remote sensing techniques. Journal of Natural Hazards and Earth System Sciences:1-15
Arshadi A and Bagheri A (2014) A system dynamic approach to sustainability analysis in Karun river basin, Iran. Journal of Iran Water Resources Research 9(3):1-13 (In Persian)
Barnes G T (2007) The potential for monolayers to reduce the evapotranspiration of water from large water storages: A review. Journal of Agricultural Water Management 95:339-353
Cherry M J and Barton B T (2017) Effects of wind on predator-prey interactions. Journal of Food Webs 13:92-97
Chaudhari S, Felfelani F, Shin S, and Pokhrel Y (2018) Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. Journal of Hydrology 560:342-353
Chowdhurry M S, Hashim L, and Mawa S (2009) Solution of prey–predator problem by numeric–analytic technique. Journal of Communications in Nonlinear Science and Numerical  Simulation 14(4):1008-1012
Didan K (2015) MOD13A2 MODIS/Terra vegetation indices 16-day L3 global 1km SIN grid V006 [data set]. NASA EOSDIS LP DAAC. doi: 10.5067/MODIS/MOD13A2.006
Durrett R and Mayberry J (2010) Evolution in predator–prey systems. Journal of Stochastic Processes and Their Applications 120(7):1364-1392
Ebrahimi E and Zarghami M (2018) Comparing effects of restoration policies under climate change by using system dynamics; Case study Urmia Lake ecosystem. Journal of Iran Water Resources Research 13(4):184-189 (In Persian)
Fang Q, Li X, and Cao M (2012) Dynamics of a discrete predator-prey system. Journal of Procedia Engineering 38:1793-1800
Garrett DR and Hoy RD (1978) A study of monthly lake to pan coefficients using a numerical lake model. Hydrology Symposium, 5-6 September, Institution of Engineers, Canberra, A.C.T:145-149
Ghassemi A, Jakeman FJ, and Nix HA (1995) Salinization of lands and water resources. Sidney (Australia): University of New South Wales Press
Hassanzadeh E, Zarghami M, and Hassanzadeh Y (2012) Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Journal of Water Resources Management 26(1):129-145
Hesami A and Amini A (2016) Changes in irrigated land and agricultural water use in the Lake Urmia basin. Journal of Lake and Reservoir Management 32(3):288-296
Iran Ministry of Energy, Water and Waste Water Macro Planning Bureau (2012) http://waterplan.moe.gov.ir /TopNav/About-Us?lang=en-US (In Persian)
Isanezhad R, Zarifian SH, Raheli H, Kouhestani H, and Beheshti Nahand SH (2015) Assessing the effects of optimal cropping pattern in Urmia Lake basin on restoration of Urmia Lake. Journal of Good Manufacturing Practice Review 18(2):498-502
Kar T K and Ghosh B (2013) Impacts of maximum sustainable yield policy to prey–predator systems. Journal of Ecological Modelling 250:134-142
Kazemi P and Araghinejad SH (2015) Using the prey-predator equation for the water allocation problem and its comparison with conventional water allocation methods, a case study of the Atrak River Basin. Iran-Water Resources Research 26(5):3-13 (In Persian)
Keshavarz A, Heydari N, and Ashrafi S (2003) Management of agricultural water consumption, drought and supply of water for future demands. In: Proceeding of the 7th International conference on the development of Dry Land, 14–17 september, Tehran, Iran:42–48
Kohler MA (1954) Lake and pan evaporation, water loss investigations: lake Hefner studies. U.S Geological Survey Professional Paper, 269:127-148
Lotka A J (1925) Elements of physical biology. Williams and Wilkins, Balimore, MD
McMurtrie R (1978) Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments. Journal of Mathematical Biosciences 39(1-2):11-5
Moghadasi M, Morid S, Delavar M, and Arabpour F (2015) Agricultural water consumption management approach in Urmia Lake restoration. Iran-Water Resources Research 11(1):1-12 (In Persian)
Nimmo WHR (1964) Measurement of evaporation by pans and tanks. Australian Meteorological Magazine 46:17-53
Paimozd S, Morid S, and Moghaddasi M (2010) Comparison of non-linear optimization and a system dynamics approaches for agricultural water allocation (A case study: Zayande Rud Basin). Iranian Journal of Irrigation and Drainage 1(4):44-52
Peixoto M S, Barros L C, and Bassanez R C (2008) Predator–prey fuzzy model. Journal of Ecological Modelling  214(1):39-44
Quants (2014) Analysis of the Urmia Lake water balance: Part I - the amount of evaporation. http://www.quants.ir/ (In Persian)
Rawashdeh S B A (2012) Assessment of change detection method based on normalized vegetation index in environmental studies. Internatinal journal of Applied Science and Engineering 10(2):89-97
Samadzadeh Fahim R, Zarghami M, Nourani V, and Hoseinlar MR (2018) The hydraulic simulation of the effects of new dikes to reduce the evaporation area; Case study: Urmia Lake, Iran. Iran-Water Resources Research 14(2):263-267 (In Persian)
Shadkam S, Ludwig F, Oel P V, Kirmir Ç, and Kabat P (2016) Impacts of climate change and water resources development on the declining inflow into Iran's Urmia Lake. Journal of Great Lakes Research 42(5):942-952
Thingstad T F (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Journal of Limnology and Oceanography 45(6):1320–1328
Torabi Haghighi A,  Fazel N, Hekmatzadeh A and Klöve B (2018)  Analysis of effective environmental flow release Strategies for Lake Urmia Restoration. Journal of Water Resources Management 32(11): 3595–3609
United States Geological Survey (2016) Earth Explorer. https://earthexplorer.usgs.gov/. Accessed 15 August 2018
Urmia Lake Restoration Program (2015) www.ulrp.sharif.ir
Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Journal of Nature 18:558-560
Wang M (2004) Stationary patterns of strongly coupled prey–predator models. Journal of Mathematical Analysis and Applications 292(2):484-505
Wang Y, Wu H, and Wang Sh (2013) A predator–prey model characterizing negative effect of prey on its predator. Journal of Applied Mathematics and Computation 219(19):9992-9999