ارزیابی اثرات تغییر اقلیم بر الگوی بهینه کشت محصولات زراعی: مطالعه موردی حوضه قره‌سو استان گلستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد کشاورزی/دانشکده کشاورزی، دانشگاه زابل.

2 استادیار/ گروه اقتصاد کشاورزی ، دانشکده کشاورزی، دانشگاه زابل.

3 استادیار / گروه اقتصاد کشاورزی، دانشکده کشاورزی، دانشگاه کشاورزی و منابع طبیعی رامین اهواز.

4 دانشیار / گروه مهندسی آب، دانشکده مهندسی آب و خاک، دانشگاه کشاورزی و منابع طبیعی گرگان.

چکیده

این مطالعه با هدف ارزیابی فنی و اقتصادی اثرات تغییر اقلیم بر بخش کشاورزی حوضه قره سو در استان گلستان انجام شده است. در قسمت اول، با استفاده از مدل بارش- رواناب IHACRES و داده‌های بارش، دما و رواناب ماهانه در دوره پایه (۲۰۱۰-۱۹۹۴)، میزان رواناب رودخانه قره‌سو در دوره 2040- 2011 شبیه‌سازی شد. سپس، وضعیت احتمالی تخصیص منابع آب و تأمین نیاز بخش کشاورزی توسط مدل WEAP مورد بررسی قرار گرفت. در قسمت دوم، برای کاهش اثرات منفی تغییر اقلیم بر بخش کشاورزی با استفاده از مدل اقتصادی برنامه‌ریزی آرمانی، الگوی کشت بهینه با آرمان‌های حداقل مصرف آب و حداکثر سود در آینده تعیین گردید. نتایج قسمت اول نشان داد که رواناب در دوره‌های آتی نسبت به دوره پایه ۳۱/۳۴ درصد کاهش می‌یابد. همچنین، نتایج مدل WEAP، نشان‌دهنده افزایش نیاز تأمین نشده بخش کشاورزی در منطقه مورد مطالعه در دوره آتی می‌باشد. این نتیجه بیانگر این است که در آینده، در صورت ادامه تغییر اقلیم، جهت کاهش اثرات منفی در بخش کشاورزی باید الگوی کشت منطقه به حذف پنبه و افزایش جو و برنج تغییر کند. این تغییرات در نتایج قسمت دوم مدل به واسطه یک مدل برنامه‌ریزی آرمانی مشخص شد. در الگوی بهینه کشت ارائه شده، میزان سود ناخالص کشاورزان منطقه مورد مطالعه در دوره ۲۰۴۰-۲۰۱۱ از ۱۳۸۶ میلیارد ریال به ۱۹۹۱ میلیارد ریال نسبت به سال پایه افزایش می‌یابد. پیشنهاد می‌شود با توجه به این‌که نتایج مدل برنامه‌ریزی آرمانی اهداف متضادی را در برگرفته است، از نتایج آن به عنوان یک راهنما برای مدیران تصمیم‌گیر استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Climate Change Impacts on Optimum Cropping Pattern: A Case Study of Ghareso Basin in Golestan Province

نویسندگان [English]

  • Elham Kalbali 1
  • Saman Ziaee 2
  • Mostafa Mardani Najafabadi 3
  • Mehdi Zakerinia 4
1 Ph.D.Student Agricultural Economic Department, Faculty of Agriculture, Zabol Univercity.
2 Assistant Professor Agricultural Economic Department, Faculty of Agriculture, Zabol Univercity.
3 Assistant Professor Agricultural Economic Department, Faculty of Agriculture, Ramin University of Agricultural Sciences and Natural Resources.
4 Associate Professor of Water Engineering Department, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources.
چکیده [English]

This study was carried out to evaluate the economic and technical effects of climate change on the agricultural sector of Ghareso basin in Golestan province. In the first part, using the IHACRES rainfall-runoff model and rainfall, temperature, and monthly runoff data during the base period (1994-2010), the Ghareso river flow was simulated during the period of 2011-2040. Then, the probabilistic status of water resources allocation and provision of agricultural sector was evaluated by WEAP model. In the second part, in order to reduce the negative effects of climate change on the agricultural sector, using the goal programming economic model, optimal cultivation with the goals of minimum water consumption and maximum future profits was determined. The results of the first part showed that runoff decreases in the upcoming periods by 31.34% compared to the base period. In addition, the results of the WEAP model indicate an increase in the unmet need of the agricultural sector in the region under study. This result suggests that with the continuation of climate change in the future to reduce the negative effects in agriculture, the region's cultivation pattern should be changed to remove cotton and increase barley and rice. These changes were identified in the results of the second part of the model through the Goal Programming Model. In the optimal cultivation pattern, the gross profit of farmers in the studied area in the period of 2011-2040 increased from 1386 billion Rials to 1991 billion Rials compared to the base year.

کلیدواژه‌ها [English]

  • Climate change
  • Gharehso basin
  • Golestan province
  • WEAP
  • Goal Programming Model
Abushandi EE, Broder M (2011) Application of IHACRES rainfall -runoff model to the Wadi Dhuliel arid catchment, Jordan. Journal of Water and Climate Change 2(1):56-71
Ajamzadeh A, Mollaeinia MR (2016) Assessment of impact of climate change on Firoozabad river runoff with downscaling of atmospheric circulation models output by SDSM and LARS-WG softwares. Iran-Water Resources Research 12(1):95-109 (In Persian)
Almasi P, Soltani S, Goodarzi M, Modarres R (2017) Assessment the impacts of climate change on surface runoff in Bazoft watershed. JWSS-Isfahan University of Technology 20(78):39-52 (In Persian)
Ashofteh PS, Bozorg-Haddad O, Mariño MA (2013) Scenario assessment of streamflow simulation and its transition probability in future periods under climate change. Water Resources Management 27(1):255-274
Blume T, Zehe E, Bronstert A (2007) Rainfall-runoff response, event-based runoff coefficients and hydrograph separation. Hydrological Sciences Journal 52(5):843-862
Cooper VA, Neguyen VTV, Nichol JA (2007) Calibration of conceptual rainfall-runoff models using global optimization methods with hydrologic process-based parameter constraints. Journal of Hydrology 334(3-4):455-466
Croke BFW, Andrews F, Spate J, Cuddy SM (2005) IHACRES user guide. Technical Report 2005/19, 2nd Ed. ICAM, School of Resources, Environment and Society, The Australian National University, Canberra, 39p
Crooks SM, Naden PS (2007) CLASSIC: A semi-distributed rainfall-runoff modelling system. Hydrology and Earth System Sciences Discussions 11(1):516-531
Dehghan Z, Delbari M, Mohammadrezapour O (2015) Planning water resources allocation under various managerial scenarios in Gorganroud basin. Water and Soil Science 25(3):117-132 (In Persian)
Dye PJ, Croke BFW (2003) Evaluation of streamflow predictions by the IHACRES Rainfall-Runoff model in two South African catchments. Environmental Modeling and Software 18:705-712
Elliott J, Deryng D, Müller C, Frieler K, Konzmann M, Gerten D, Glotter M, Flörke M, Wada Y, Best N, Eisner S (2014) Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences 111(9):3239-3244
Esteve P, Varela-Ortega C, Blanco-Gutiérrez I, Downing TE (2015) A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecological Economics 120:49-58
Flavell RB (1976) A new goal programming formulation. Omega 4(6):731-732
Ghandehari Gh, Soltani J, Hamidianpour M (2015) Title evaluation of optimal water allocation scenarios for Bar river of Neishabour using WEAP model under A2 climatic changes scenario. Journal of Water and Soil 29(5):1158-1172 (In Persian)
Ghorbani Kh, Sohrabian E, Salarijazi M, Abdolhoseini M (2016) Prediction of climate change impact on monthly river discharge trend using IHACRES hydrological model (Case study: Galikesh watershed). Journal of Water and Soil Resources Conservation 5(4):19-34 (In Persian)
Gorgan Organization of Jihad-e-Agriculture (2017) Statistics and information of crops. (In Persian)
Hosseini S, Ghorbani MA, Masah Bavani A (2016) Rainfall-runoff modelling under the climate change condition in order to project future streamflows of Sufichay watershed. Journal of Watershed Management Research 6(11):1-14 (In Persian)
Hosseini S, Nazari M, Araghinejad Sh (2013) The effects of climate change on the agricultural sector emphasizing the role of applying adaptive strategies in this section. Iranian Journal of Agricultural Economics and Development Research 44(1):1-16 (In Persian)
Intergovernmental Panel on Climate Change (IPCC) (2014) Summary for policymakers. In: Field C, Barros V, Dokken D, et al. (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge:1-22
Jalili KH, Moradi RM, Bozorg Haddad O (2016) Assessment of climate change impacts on water resources in Islamabad aquifer and land allocation optimization. Desert Ecosystem Engineering Journal 5(11):119-133 (In Persian)
Kahil MT, Connor JD, Albiac J (2015) Efficient water management policies for irrigation adaptation to climate change in Southern Europe. Ecological Economics 120:226-233
Kalbali E, Mardani M, Sabouhi Sabouni M (2014) Quality management of groundwater resources of Aghala. Journal of Environmental Studies 40(3):775-786 (In Persian)
Karamouz M, Araghinejad Sh (2015) Advanced hydrology. Amirkabir University Press, 468p (In Persian)
Kite G (2001) Modelling the Mekong: Hydrological simulation for environmental impact studies. Journal of Hydrology 253(1-4):1-13
Lehner B, Döll P, Alcamo J, Henrichs T, Kaspar F (2006) Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis. Climatic Change 75:273-299
Malmir M, Mohammadrezapour O, Sharif Azari S (2016) Evaluation of climate change impacts on agricultural water allocation in Garasu watershed, using WEAP. The Iranian Society of Irrigation and Water 6(23):143-155 (In Persian)
McIntyre N, Al-Qurashi A (2009) Performance of ten rainfall–runoff models applied to an arid catchment in Oman. Environmental Modelling and Software 24(6):726-738
Meshkati A, Kordjazi M, Babaeian I (2010) Investigation and assessment of LARS-WG model in simulation of meteorological data of Golestan in 1993-2007. Journal of Applied Researches in Geographical Sciences 16:81-96 (In Persian)
Mirzaie K, Ziaei S (2016) Determination of agronomic- economic program of cropping pattern for sustainability of environment using lexicographic goal programming (Case study: west Roudbar Alamot). Journal of Agricultural Economics Research 8(29):161-175 (In Persian)
Niromandfard F, Zakerinia M, Yazarloo B (2018) Investigating the effect of climate change on river flow using IHACRES rainfall-runoff model. Irrigation Sciences and Engineering 41(3):103-117 (In Persian)
Parhizgari A, Mahmoodi A, Shokat Fadaie M (2017) Assessing the effects of climate change on available water resources and agricultural production in the watershed basin. Agricultural Economics 9(33):23-50 (In Persian)
 Razzaghian H, Shahedi K, Habibnejad-Roshan M (2016) Evaluation of climate change effect on Babol-rood watershed runoff using IHACRES model. The Iranian Society of Irrigation and Water 7(26):159-172 (In Persian)
Regional Water Authority of Golestan (2016) Statistics and information of surface water. (In Persian)
Romero C (2004) A general structure of achievement function for a goal programming model. European Journal of Operational Research 153(3):675-686
Sabouhi Sabouni M (2012) Application of mathematical programming in agricultural economics with a focus on using the excel software. Noor-e-Elm Press, 294p (In Persian)
Salehpoor Laghani J, Ashrafzadeh A, Moussavi SA (2018) Water resources allocation management in Hablehroud basin using a combination of the SWAT and WEAP models. Iran-Water Resources Research 14(3):278-290 (In Persian)
Shakib SH, Farzin S (2018) Prediction of water resource status affected by climate change whit ANFIS model and general circulation model (Case study: Ziarat basin of Gorgan). Iranian Journal of Ecohydrology 5(1):173-187 (In Persian)
Sieber J, Swartz C, Huber-Lee A (2005) User guide for WEAP21. Stockholm Environment Institute Tellus Institute
Taesombat W, Sriwongsitanon N (2010) Flood investigation in the Upper Ping River Basin using mathematical models. Kasetsart Journal (Natural Science) 44:152-166
Varela-Ortega C, Blanco-Gutiérrez I, Esteve P, Bharwani S, Fronzek S, Downing TE (2016) How can irrigated agriculture adapt to climate change? Insights from the Guadiana Basin in Spain. Regional Environmental Change 16(1):59-70
Vaseghi E, Esmaili A (2008) The effects of climate change on agricultural land rents. Agricultural Economics 2(3):6-47 (In Persian)
Yates D, Sieber J, Purkey D, Huber-Lee A (2005) WEAP21-A demand-, priority-, and preference-driven water planning model: Part 1: Model characteristics. Water International 30(4):487-500
Yazdanpanah T, Davar K, Khodashenas SR, Ghahraman B (2009) Water resource management of basin by WEAP (Case study: Azgand basin). Journal of Water and Soil 21:213-223 (In Persian)
Ye W, Jakeman AJ, Barnes CJ (1995) A parametrically efficient model for prediction of streamflow in an Australian benchmark catchment with complex storage dynamics. Environment International 21(5):539-544