Rainfall Trend Analysis of Mazandaran Province Using Regional Mann-Kendall Test

Document Type : Original Article

Authors

1 Graduate of Irrigation and Drainage, University of Zabol, Zabol, Iran

2 Associate Professor of Hydrology, Department of Range and Watershed Management, Faculty of Natural Resources, University of Zabol, Zabol, Iran

Abstract

Changes in the rainfall trends can be a sign of the global climate change. The study on the hydroclimate trends can be conducted at both station and regional scales. Fewer studies have however paid attention to this subject at the regional scale. In this study, existence of a trend in both mean annual rainfall amounts and maximum 24-hour rainfall amounts over a 30-year period for 35 raingauge stations located in Mazandaran Province, northern Iran, is investigated with nonparametric Mann-Kendall test at both local and regional scales. The Trend Free Pre-Whitening approach (TFPW) was used to remove the effects of serial correlation in the time series on Mann-Kendall test. Removal of auto correlation in the time series is also performed by the same approach. The results of the regional Mann-Kendall test showed that if Mazandaran Province is considered as a unit region, no trend in the time series of maximum 24-hour rainfall is observed in 5% significance level. But if Mazandaran Province is divided into hydrologic regions using Fuzzy cluster analysis, it is observed that a significant trend exists in the western part of the province at 5% significance level. The investigation of the mean annual rainfall time series indicates an upward trend at 1% significance level for the whole province.
   

Keywords


عزیزی، ق.، روشنی، م. (1387)، ”مطالعه تغییر اقلیم در سواحل جنوبی دریای خزر به روش من-کندال“، پژوهش­های جغرافیایی، شماره 64، صص13-28.
ﮐﺎوﯾﺎﻧﯽ، م.، ﻋﺴﺎﮐﺮه،ح. (1382)، ”بررسی آماری روند بلندمدت بارش سالانه اصفهان“، سومین کنفرانس منطقه­ای تغییر اقلیم اصفهان.
جهان­بخش، س.، هادیانی، ا.، رضایی، بنفشه مجید، دین پژوه، ی. (1389)، ”مدل‌سازی پارامترهای تغییر اقلیم در استان مازندران“، چهارمین کنگره بین المللی جغرافی­دانان جهان اسلام.
Bezdek, J.C. (1981), Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York.
Brooks, C.E.P. and Carrthers, N. (1953), Handbook of Statistical Methods in Meteorology, London, H.M.S.O., p. 412.
Burlando, P. and Rosso, R. (2002), “Effects of transient climate change on basin hydrology. 1: Precipitation scenarios for the Arno River, central Italy”, Hydrological Processes, 16, pp. 1151– 1175.
Douglas, E. M., Vogel, R. M. and Kroll, C. N. (2000), “Trends in floods and low flows in the United States: impact of spatial correlation”, Journal of Hydrology, 240, pp. 90–105.
Dunn, J.C. (1974), “A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters”, Journal of Cybernetics, 3 (3), pp. 32–57.
Hathaway, R. J. and Bezdek, J. C. (2001), “Fuzzy c-means clustering of incomplete data”, IEEE Transactions Syst. Man Cybern, B, 31, pp. 735– 744.
Helsel, D.R.,and Hirsch, R.M. (1992), Statistical Methods in Water Resources. Elsevier, Amsterdam. ISBN 0-444-88528-5.
Jingyi, Z. and Hall, M.J. (2004), “Regional flood frequency analysis for the Gan-Ming River basin in China”, Journal of Hydrology, 296, pp. 98–117.
Kendall, M.G. (1975), Rank Correlation Methods, Charles Griffin, London.
Kwon, S.H. (1998), “Cluster validity index for fuzzy clustering”, Electronics Letters, 34 (22), pp. 2176–2177.
Lazaro, R., Rodrigo, F. S., Gutierrez, L., Domingo, F. and Puigdefabregas, J. (2001), “Analysis of a 30-year rainfall record (1967– 1997) in semi-arid SE Spain for implications on vegetation”, Journal of Arid Environments., 48, pp. 373– 395.
Mann, H.B. (1945), “Nonparametric Tests Against Trend”, Econometrica,13, pp. 245-259.
Modarres, R. and Sarhadi, A. (2009), “Rainfall trends analysis of Iran in the last half of the twentieth century”, Journal of geophysical research., 114, D03101, doi:10.1029/2008JD010707.
Modarres, Reza. and Silva, V. (2007),“ Rainfall trends in arid and semi-arid regions of Iran”, Journal of Arid Environments., 70, PP.344–355.
Rao, A.R. and Srinivas, V.V. (2006), “Regionalization of watersheds by fuzzy cluster analysis”, Journal of hydrology, 318, pp. 57-79.
Ross, T.J. (1995), Fuzzy Logic with Engineering Applications, McGraw-Hill, New York.
Sadri, S., Madsen, H., Mikkelsen, P.S., and Burn, D.H. (2009), “Analysis of extreme rainfall trends in Denmark”, 33th IAHR Congress: Water engineering for a sustainable environment.
Salas, J.D., Delleur, J.W., Yevjevich, V. and Lane, W.L. (1980), Applied Modelling of Hydrologic Time Series, Water Resources Publications, Littleton, CO, USA.
Sen, P. (1968), “Estimates of the regression coefficient based on Kendall’s tau”, Journal of American Statistical Association, (63), pp.1379–1389.
Wang, Y. and Zhou, L. (2005), “Observed trends in extreme precipitation events in China during 1961 – 2001 and the associated changes in large-scale circulation”, Geophysical research letters, 32. L09707, 4 PP. doi:10.1029/2005GL022574.
Xie, X.L. and Beni, G. (1991), “A validity measure for fuzzy clustering”, IEEE Transactions on pattern analysis and machine intelligence, 13 (8), pp. 841–847.
Xu, Z.X., Takeuchi, K. and Ishidaira, H. (2003), Monitoring Trend Step Changes in Precipitation in Japanese Precipitation. Journal of hydrology. 279: 144-150.
Yue, S., Pilon, P., Phinney, B., and Cavadias, G.S. (2002), “The influence of autocorrelation on the ability to detect trend in hydrological series”, Hydrological Processes, (16), pp. 1807–1829.
Yue, S., Pilon, P. and Phinney, B. (2003), “Canadian streamflow trend detection: impacts of serial and cross correlation”, Hydrological Sciences Journal, 48 (1), pp. 51–63.