The role of reversibility in flocculation of heavy metals in the estuarine zone

Document Type : Original Article

Authors

1 Graduate Faculty of Environmental Engineering, University of Tehran, Tehran, Iran.

2 Associate Professor, Graduate Faculty of Environmental Engineering, University of Tehran, Tehran. Iran.

3 - M.Sc. Graduate of Coastal Engineering, Department of Environmental Engineering, college of Environmental, University of Tehran, Tehran, Iran.

Abstract

After discover of flocculation process in estuaries, there was a significant change in calculation of dissolved metals load entering sea and other saline water environments through rivers. In other words, due to mixing of fresh and saline water in an estuarine zone, a significant amount of heavy metals flocculate and settle in the estuarine zone. In the present research, the flocculation process of heavy metals in Shfarud River is investigated during estuarine mixing with Caspian Sea water. Results indicated that that Cd, Cr, Co and Ni lose their initial load by 86, 74, 62 and 52 percent, respectively. Furthermore, an updated method, which is considered as one achievement, was used to simulate the estuary in this research. Actually, it is showed that flocculation process could be a reversible process. In other words, due to continuous chemical and physical change of estuary environment, flocs of metals might return to dissolve phase.

Keywords

Main Subjects


Biati A, Karbassi A (2012) Flocculation of metals during mixing of Siyahrud River water with Caspian Sea water. Journal of Environmental Monitoring Assessment 184:6903-6911
Biati A, Karbassi A, Hassani A, Monavari SM, Moattar F (2010) Role of metal species in flocculation rate during estuarine mixing. International  Journal of  Environmental Science 7(2):327- 336
Duinker J, Nolting R (1976) Distribution model for particulate trace metals in Rhine Estuary, Southern Bight and Dutch Wadden Sea. Netherlands Journal of Sea Research 10:71-102
Forstner U, Wittmann GTW (1981) Metal pollution in the aquatic environment. Springer, Berlin
Karbassi A, Nouri J, Nabi Bidhendi G, Ayaz GO (2008) Behavior of Cu, Zn, Pb, Ni and Mn during mixing of freshwater with the Caspian Seawater. Journal of Desalination 22(9):118-124
Karbassi AR, Bassam SS, Ardestani M (2013) Flocculation of Cu, Mn, Ni, Pb and Ni during Estuarine Mixing (Caspian Sea). International Journal of Environmental Research 7(4):917-924
Karbassi AR, Heidari SM (2015) An investigation on role of Salinity, PH and DO on heavy metals elimination throughout estuarial mixture. Global Journal of Environmental Science and Management 1(1):41-46
Karbassi AR, Marefat A (2017) The impact of increased oxygen conditions on heavy metal flocculation in the Sefidrud estuary. Journal of Marine Pollution Bulletin 15; 121(1-2):168-175
Pillay K, Pillay S (2013) Statistical analysis of physico-chemical properties of the estuaries of  KwaZulu Natal, South Africa. International Journal of Environment Research 7(1):11-16
Pritchard DW (1967) What is an estuary: physical viewpoints estuaries, G.H. Lauff (Ed) Estuaries. American Association for the Advancement of Science 83:3-5
Saeedi M, Karbassi AR, Mehrdadi N (2003) Flocculation of dissolved Mn, Zn, Ni, and Cu during the estuarine mixing of Tajan river water with Caspian Sea water. International Journal of Environmental Studies 60(6):567-576
Saeedi M, Li LY, Karbassi AR, Zanjani AJ (2013)  Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter. Journal of Environment Monitoring Assessment 185(2):1737-1754
Shamkhali Chenar S, Karbassi AR, Hajizadeh Zaker N, Ghazban F (2013) Electroflocculation of metals during estuarine mixing (Caspian Sea). Journal of Coastal Research 29(4):847-854
Sholkovitz ER (1976) Flocculation of dissolved organic and inorganic matter during the mixing river water and seawater. Journal of Geochimica et Cosmochimica Acta 40(7):831- 845
Zhiqing LE, Jianhu Z, Jinsi C (1987) Flocculation of dissolved Fe, Al, Si, Cu, Pb and Zn during estuarine mixing. Journal of Acta Oceanologica Sinica 6(4):567-576