توسعه مدل هیدرولوژیکی روزانه بارش- رواناب برای شبیه سازی آب ورودی به سد بوکان و کمی سازی تأثیرات خشکسالی شدید تاریخی با به کارگیری مدل WEAP و کالیبراسیون چند هدفه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد محیطزیست، دانشکده مهندسی عمران، دانشگاه صنعتی شریف.

2 پژوهشگر مدیریت منابع آب، دانشکده مهندسی عمران و علوم زمین، دانشگاه صنعتی دلفت هلند.

3 استاد گروه آب و محیطزیست، دانشکده مهندسی عمران، دانشگاه صنعتی شریف.

چکیده

با افزایش خشکسالی‌ها و افزایش مصرف آب در بخش کشاورزی، دریاچه ارومیه با بحران کم آبی روبرو شده ‌‌است. هدف این تحقیق، توسعه یک مدل هیدرولوژیکی به منظور شبیه‌سازی روزانه رواناب ورودی به سد بوکان است تا از آن برای شبیه‌سازی مؤلفه‌های بیلان آب در زیرحوضه‌‎های بالادست این سد با نگرشی نوین نسبت به تحقیقات مشابه استفاده شود. با استفاده از روش رطوبت خاک، یک مخزن برای شبیه‌سازی روزانه ذخیره برف و مخزن دیگر برای شبیه‌سازی روزانه رطوبت منطقه ریشه درنظر گرفته می‌شود. به‌منظور تخمین مقدار بهینه پارامترهای کالیبراسیون، از کالیبراسیون دو هدفه MOPSO1 برای بیشینه‌‌سازی دقت شبیه‌­سازی دبی و لگاریتم دبی مشاهداتی استفاده شده ‌است. نتایج نشان داد بین به حداکثر رساندن دو تابع هدف موازنه2 کمی وجود دارد، درواقع هیچ خطای بزرگی در مدل وجود ندارد که مانع از بهبود هم‌زمان هر دو تابع هدف شود. نتایج کالیبراسیون نشان می‌­دهد که مقدار میانگین معیار نش- ساتکلیف3 زیرحوضه‌های بالادست سد بوکان برای شبیه‌سازی دبی و لگاریتم دبی مشاهداتی به ترتیب برابر 0/43 و 0/63 و این مقادیر برای مرحله واسنجی به ترتیب برابر 0/54 و 0/57 بدست آمد. مدل‌سازی بیلان آب حاکی از آن است که بارش و رواناب ورودی به سد در دوره خشکسالی شدید به ترتیب 32 و 40 درصد و رطوبت خاک و ذخیره برف در منطقه به ترتیب 158 و 32 درصد نسبت به دوره بلندمدت کاهش یافته‌اند. مدل توسعه یافته می‌تواند به منظور پیش‌بینی اثرات تغییر اقلیم بر رواناب ورودی به سد و برنامه‌ریزی برای تخصیص بهینه منابع آب سد بوکان مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of a Daily Rainfall-Runoff Model to Simulate the Bukan Reservoir Inflow and Quantify the Effects of Severe Historical Drought Using WEAP Model and MultiObjective Calibration

نویسندگان [English]

  • Amirreza Meydani 1
  • Amirhossein Dehghanipour 2
  • Masoud Tajrishy 3
1 M.Sc. Student of Environmental Engineering, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran.
2 Researcher of Water Resources Management, Faculty of Civil Engineering and Geoscience, Delft University of Technology, Delft, The Netherlands.
3 Professor, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran.
چکیده [English]

Urmia Lake has faced a water shortage crisis and a sharp decline in water level due to decreasing precipitation and increasing water consumption in the agricultural sector. This study aims to develop a hydrological model to simulate the daily inflow of Bukan reservoir and simulate the water balance components for the upstream sub-basins of this reservoir through a new approach. In this study, two separate storages are considered for daily simulation of snow and root zone soil moisture, and multi-objective calibration (MOPSO) is applied to simultaneously maximize the simulation accuracy of observed river discharge and logarithm of river discharge. The results showed a relatively little trade-off between maximizing the two objective functions to estimate the optimal value of the calibration parameters. In other words, there is no significant error in the model that simultaneously prevents improving both objective functions. Results showed that the average Nash-Sutcliffe criterion for simulation of river discharge and the logarithm of river discharge were respectively 0.43 and 0.63 in the calibration and 0.54 and 0.57 in the validation step. Water balance modeling indicated that precipitation and inflow to the reservoir were decreased respectively by 32% and 40% in severe drought years and soil moisture and snow accumulation were reduced by 32% and 158%, respectively, compared to the long-term period. The developed model can predict the effects of climate change and climate variability on Bukan reservoir inflow and optimally allocate reservoir water to satisfy water demand.

کلیدواژه‌ها [English]

  • Urmia Lake basin
  • Bukan Reservoir
  • Multi-objective Optimization
  • Soil Moisture Method
Abrishamchi A, Alizadeh H, Tajrishy M, and Abrishamchi A (2007) Water resources management scenario analysis in Karkheh River Basin, Iran, using WEAP model. Hydrological Science and Technology 23(1):1–12
Adgolign TB, Rao GVRS, and Abbulu Y (2016) WEAP modeling of surface water resources allocation in Didessa Sub-Basin, West Ethiopia. Sustainable Water Resources Management, Springer International Publishing 2(1):55–70
Ahmadaali J, Barani G-A, Qaderi K, and Hessari B (2017) Calibration and Validation of model WEAP21 for Zarrineh Rud and Simineh Rud Basins. Iranian Journal of Soil and Water Research 48(4):823-839 (In Persian)
Ahmadaali J, Barani GA, Qaderi K, and Hessari B (2018) Analysis of the effects ofwater management strategies and climate change on the environmental and agricultural sustainability of Urmia Lake Basin, Iran. Water (Switzerland) 10(2):160
Barlow M, Zaitchik B, Paz S, Black E, Evans J and Hoell A (2016) A review of drought in the Middle East and southwest Asia. Journal of Climate 29(23):8547–8574
Coello CAC, Pulido GT, and Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Transactions ON Evolutionary Computation 8(3):256–279
Dehghanipour AH, Panahi DM, and Mousavi H (2020a) Effects of water level decline in Lake Urmia , Iran. Water (Switzerland) 12(8):2153
Dehghanipour AH, Schoups G, Zahabiyoun B, and Babazadeh H (2020b) Meeting agricultural and environmental water demand in endorheic irrigated river basins: A simulation-optimization approach applied to the Urmia Lake basin in Iran. Agricultural Water Management, Elsevier 241(April):106353
Dehghanipour AH, Zahabiyoun B, Schoups G, and Babazadeh H (2019) A WEAP-MODFLOW surface water-groundwater model for the irrigated Miyandoab plain, Urmia lake basin, Iran: Multi-objective calibration and quantification of historical drought impacts. Agricultural Water Management, Elsevier 223(July):105704
Dunn SM, Stalham M, Chalmers N, and Crabtree B (2003) Adjusting irrigation abstraction to minimise the impact on stream flow in the east of Scotland. Journal of Environmental Management 68(1):95–107
Emami F and Koch M (2019) Modeling the impact of climate change on water availability in the Zarrine River Basin and inflow to the Boukan Dam, Iran. Climate 7(4):51
Faiz MA, Liu D, Fu Q, Uzair M, Khan MI, Baig F, Li T, and Cui S (2018) Stream flow variability and drought severity in the Songhua River Basin, Northeast China. Stochastic Environmental Research and Risk Assessment, Springer Berlin Heidelberg 32(5):1225–1242
FAO and RS center of Tarbiat Modarres University (2015) Land cover classification of Urmia Lake basin. A Report
Fowe T, Nouiri I, Ibrahim B, Karambiri H, and Paturel JE (2015) Optiwam: An intelligent tool for optimizing irrigation water management in coupled reservoir–groundwater systems. Water Resources Management 29(10):3841–3861
Ghaheri M, Baghal-Vayjooee MH, and Naziri J (1999) Lake Urmia, Iran: A summary review. International Journal of Salt Lake Research 8(1):19–22
Her Y and Seong C (2018) Responses of hydrological model equifinality, uncertainty, and performance to multi-objective parameter calibration. Journal of Hydroinformatics 20(4):864–885
Hrachowitz M and Clark MP (2017) HESS Opinions: The complementary merits of competing modelling philosophies in hydrology. Journal of Earth System Science 21:3953–3973
Le Page M, Berjamy B, Fakir Y, Bourgin F, Jarlan L, Abourida A, Benrhanem M, Jacob G, Huber M, Sghrer F, … Chehbouni G (2012) An integrated DSS for groundwater management based on remote sensing, The Case of a Semi-arid Aquifer in Morocco. Water Resources Management 26(11):3209–3230
Mancosu N, Snyder RL, Kyriakakis G, and Spano D (2015) Water scarcity and future challenges for food production. Water (Switzerland) 7(3):975–992
Mehta VK, Haden VR, Joyce BA, Purkey DR, and Jackson LE (2013) Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California. Agricultural Water Management, Elsevier B.V. 117:70–82
Ministry of Energy (2016) Implementing solutions to reduce the agricultural water consumption of the Zarrinehrood and Siminehrood sub-basin by 40%. Report (In Persian)
Moriasi DN, Arnold JG, Liew MW Van, Bingner RL, Harmel RD, and Veith TL (2007) Model evaluation guidlines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3):885–900
Mostafazade M and Alizadeh H (2020) Calibration of a water resource planning model using many-objective optimization. Iran-Water Resources Research 15(4):200-213 (In Persian)
Mukhtarov FG (2007) Intellectual history and current status of Integrated Water Resources Management: A global perspective. Adaptive and Integrated Water Management Springer, Berlin, Heidelberg,167–185 https://doi.org/10.1007/978-3-540-75941-6_9
Nouiri I, Yitayew M, Maßmann J, and Tarhouni J (2015) Multi-objective optimization tool for integrated groundwater management. Water Resources Management 29(14):5353–5375
Oudin L, Andréassian V, Mathevet T, Perrin C, and Michel C (2006) Dynamic averaging of rainfall-runoff model simulations from complementary model parameterizations. Water Resources Research 42(7):1–10
Psomas A, Panagopoulos Y, Konsta D, and Mimikou M (2016) Designing water efficiency measures in a catchment in greece using WEAP and SWAT models. Procedia Engineering 162:269–276
Pushpalatha R, Perrin C, Le N, and Andréassian V (2012) A review of efficiency criteria suitable for evaluating low-flow simulations. Journal of Hydrology, Elsevier B.V. 420–421:171–182
Roodari A, Hrachowitz M, Hassanpour F, and Yaghoobzadeh M (2021) Signatures of human intervention – or not? Downstream intensification of hydrological drought along a large Central Asian River: the individual roles of climate variability and land use change. Hydrology and Earth System Sciences 25(4):1943–1967
Schoups G, Addams CL and Gorelick SM (2005) Multi-objective calibration of a surface water-groundwater flow model in an irrigated agricultural region: Yaqui Valley, Sonora, Mexico. Hydrology and Earth System Sciences 9(5):549–568
Schulz S, Darehshouri S, Hassanzadeh E, Tajrishy M, and Schüth C (2020) Climate change or irrigated agriculture– what drives the water level decline of Lake Urmia. Scientific Reports 10(1):1–10
Sieber J and Purkey D (2015) Water evaluation and planning system user guide. U.S. Center: Stockholm Environment Institute
Sisto NP (2009) Environmental flows for rivers and economic compensation for irrigators. Journal of Environmental Management, Elsevier Ltd 90(2):1236–1240
United Nations, Department of Economic and Social Affairs, Population Division (2013). World Population Prospects: The 2012 Revision, Highlights and Advance Tables. Working Paper No. ESA/P/WP.228 https://population.un.org/wpp/Publications/Files/WPP2012_HIGHLIGHTS.pdf
Valipour M (2015) A comprehensive study on irrigation management in Asia and Oceania. Archives of Agronomy and Soil Science 61(9):1247–1271
Valipour M, Ziatabar Ahmadi M, Raeini-Sarjaz M, Gholami Sefidkouhi MA, Shahnazari A, Fazlola R, and Darzi-Naftchali A (2015) Agricultural water management in the world during past half century. Archives of Agronomy and Soil Science 61(5):657–678
Vonk E, Xu YP, Booij MJ, Zhang X, and Augustijn DCM (2014) Adapting multireservoir operation to shifting patterns of water supply and demand: A case study for the Xinanjiang-Fuchunjiang reservoir cascade. Water Resources Management 28(3):625–643
Xue J, Gui D, Lei J, Sun H, Zeng F, and Feng X (2017) A hybrid Bayesian network approach for trade-offs between environmental flows and agricultural water using dynamic discretization. Advances in Water Resources, Elsevier Ltd 110:445–458
Yates D, Purkey D, Sieber J, Huber-lee A, Galbraith H, West J, Herrod-julius S, Young C, Joyce B, and Rayej M (2009) Of the Sacramento Basin , California. Journal of Water Resources Planning and Management 135(October):303–313