مروری بر سیر بازاندیشی در تجدیدپذیری آب‌ زیرزمینی

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری آبیاری و زهکشی، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران.

2 استاد گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، ایران.

چکیده

مدیریت آب‌ زیرزمینی وابسته به تخصیص، و تخصیص صحیح وابسته به فهم تجدیدپذیری است. در واقع، تعیین کمیّت ‌تجدیدپذیری آب‌ زیرزمینی، شالوده اصلی تخصیص است. اما علی‌رغم این اهمیت؛ این مفهوم با ابهام روبرو است. در این مقاله، ابتدا تعاریف تجدیدپذیری آب‌ زیرزمینی بر اساس شار طبیعی تغذیه، تخمین حجم انبارش آبخوان و یا دوره جایگزینی آب‌ زیرزمینی مرور گشته است. سپس مفاهیم اخیر در تعریف تجدیدپذیری آب‌ زیرزمینی مبتنی بر اصل «گیرش» (دخالت بشر در بر هم زدن تعادل آب‌ زیرزمینی) نیز مرور و تحلیل قرار گرفته است. اصل «گیرش» اشاره به اثر پمپاژ بر شارش‌-انبارش آبخوان و تجدیدپذیری آن دارد. رویکردهای اخیر، تعاریف «شارش-مبنا» و «انبارش-مبنا» را با یکدیگر ترکیب نموده و همچنین تجدیدپذیری آب‌ زیرزمینی را به پویایی کاربری‌های آب مرتبط نموده‌اند. در مجموع نتایج نشان داد که تجدیدپذیری آب‌ زیرزمینی مفهومی پیچیده بوده، که همچنان در حال توسعه و بهبود است. در انتها به دلیل ارتباط تنگاتنگ مدیریت آب‌ زیرزمینی و مدیریت خشکسالی (به ویژه با توجه به ضرورت تاب‌آوری)، یک گام جدید بر گام‌های حاصل از مرور افزوده شد؛ زیرا ضروری است برای افزایش تاب‌آوری توسعه، ریسک ابرخشکسالی مورد توجه قرار گیرد. چارچوب ارائه شده جدید می‌تواند درک بهتری از ارتباط سه-جانبه «گیرش-تجدیدپذیری- تاب‌آوری» به نمایش بگذارد؛ که توجه به آن برای مدیریت آب‌ زیرزمینی ضروری است

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of the Rethinking Groundwater Renewability

نویسندگان [English]

  • Hashem Derakhshan 1
  • Kamran Davary 2
  • Abolfazl Mosaedi 2
1 Ph.D. Student of Irrigation and Drainage, Department of Water Science and Engineering, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Professor, Department of Water Science and Engineering, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

Groundwater management depends on allocation and the correct allocation depends on understanding groundwater renewability. In other words, determining the groundwater renewability is the main foundation for the allocation of these resources. Though many definitions of groundwater renewability are developed, the concept still has ambiguity. In this article, we reviewed the definition of groundwater renewability based on flux, storage and residence time and challenged these old definitions with the more recent ones. The principle of "capture" refers to the effect of pumping on the flux-storage of the aquifer and the groundwater renewability. Recent approaches have combined the "flux-based" and "storage-based" definitions and furthermore related the definition of groundwater renewability to the behavior of human societies and the dynamism of the water uses. The results showed that groundwater renewability is altogether a complex concept which is still to be developed and improved. Also, due to the close relationship between groundwater management and drought management (especially considering of resilience) a new step was added to the steps resulting from this review. This addressed the necessity to take into account the risk of megadroughts and secure a more resilient development. In this framework we showed a better understanding of the trilateral relationship of "capture-renewability-resilience" which is essential for groundwater management.

کلیدواژه‌ها [English]

  • Groundwater
  • Renewability
  • Flux
  • Storage
  • Capture
Aeschbach-Hertig W and Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience. Nature Publishing Group 5(12):853–861
Alipor A and Derakhshan H (2019) Strategies for achieve groundwater sustainable management. Strategic Studies of Public Policy, Center of Strategic Studies 8(29):261–275 (In Persian)
Alley WM, Clark BR, Ely DM, and Faunt CC (2018) Groundwater development stress: Global-scale indices compared to regional modeling. Groundwater 56(2):266–275
Befus KM, Jasechko S, Luijendijk E, Gleeson T, and Bayani Cardenas M (2017) The rapid yet uneven turnover of Earth’s groundwater. Geophysical Research Letters., Wiley Online Library 44(11):5511–5520
Bierkens MFP and Wada Y (2019) Non-renewable groundwater use and groundwater depletion: A review. Environmental Research Letters, IOP Publishing 14(6):063002
Bredehoeft J and Durbin T (2009) Ground water development-The time to full capture problem. Groundwater, John Wiley & Sons, Ltd 47(4):506–514
Bredehoeft JD (2002) The water budget myth revisited: Why hydrogeologists model. Groundwater, John Wiley & Sons, Ltd 40(4):340–345
Bredehoeft JD and Alley WM (2014) Mining groundwater for sustained yield. The Bridge 44(1):33–41
Broers HP (2004) The spatial distribution of groundwater age for different geohydrological situations in the Netherlands: implications for groundwater quality monitoring at the regional scale. Journal of Hydrology, Elsevier 299(1–2):84–106
Castañeda IS, Mulitza S, Schefuß E, dos Santos RAL, Damsté JSS, and Schouten S (2009) Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proceedings of the National Academy of Sciences, National Acad Sciences 106(48):20159–20163
Claussen M, Dallmeyer A, and Bader J (2017) Theory and modeling of the African humid period and the green Sahara. Oxford Research Encyclopedia of Climate Science
Cook ER, Seager R, Kushnir Y, Briffa KR, Büntgen U, Frank D, Krusic PJ, Tegel W, Schrier G Vander, Andreu-Hayles L, …, Zang C (2015) Old world megadroughts and pluvials during the Common Era. Science Advances 1(10):1–10
Cuthbert MO, Gleeson T, Bierkens MFP, Ferguson G, and Taylor RG (2022) Defining renewable groundwater use to improve groundwater management. EarthArXiv, https://doi.org/ 10.31223/X5891C 
de Graaf IEM, Gleeson T, (Rens) van Beek LPH, Sutanudjaja EH, and Bierkens MFP (2019) Environmental flow limits to global groundwater pumping. Nature. Nature Publishing Group 574(7776):90–94
de Graaf IEM, van Beek RLPH, Gleeson T, Moosdorf N, Schmitz O, Sutanudjaja EH, and Bierkens MFP (2017) A global-scale two-layer transient groundwater model: Development and application to groundwater depletion. Advances in Water Resources, Elsevier 102:53–67
Derakhshan H (2023) Why is groundwater balancing easy yet difficult to imitate? Water and Sustainable Development 9(3):147–155 (In Persian)
Derakhshan H, Davary K, Hasheminia SM, and Ziaei AN (2018) Estimation and conservation of strategic groundwater resources based on Probable Maximum Drought (PMD). Journal of Water and Sustainable Development, Ferdowsi University of Mashhad 4(2):121–130 (In Persian)
Derakhshan H, Mianabadi A, Mosaedi A, and Davary K (2023) A review of the evolution aquifer yield and role of these concepts in groundwater management. Iran-Water Resources Research, Iranian Water Resources Association 19(3) (In Persian)
Derakhshan H and Omranian Khorasani H (2019) Drought reserve, necessity for sustainability. Journal of Water and Sustainable Development, Ferdowsi University of Mashhad 6(1):77–84 (In Persian)
Döll P, Hoffmann-Dobrev H, Portmann FT, Siebert S, Eicker A, Rodell M, Strassberg G, and Scanlon BR (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. Journal of Geodynamics. Elsevier 59:143–156
Elshall AS, Arik AD, El-Kadi AI, Pierce S, Ye M, Burnett KM, Wada CA, Bremer LL, and Chun G (2020) Groundwater sustainability: A review of the interactions between science and policy. Environmental Research Letters 15(9)
Famiglietti JS (2014) The global groundwater crisis. Nature Climate Change, Nature Publishing Group 4(11):945–948
FAO (2003) Review of world water resources by country: 2. Concepts and Definitions, Water Reports 1–110
Ferguson G, Cuthbert MO, Befus K, Gleeson T, and McIntosh JC (2020) Rethinking groundwater age. Nature Geoscience, Nature Publishing Group 13(9):592–594
Gazor Habib Abadi N and Derakhshan H (2023) Groundwater-drought conjunctive management: A review of California Experiences. Journal of Water and Sustainable Development, Ferdowsi University of Mashhad 10(1):77–86 (In Persian)
Gleeson T, Alley WM, Allen DM, Sophocleous MA, Zhou Y, Taniguchi M, and VanderSteen J (2012) Towards sustainable groundwater use: Setting long‐term goals, backcasting, and managing adaptively. Groundwater, Wiley Online Library 50(1):19–26
Gleeson T, Befus KM, Jasechko S, Luijendijk E, and Cardenas MB (2016) The global volume and distribution of modern groundwater. Nature Geoscience, Nature Publishing Group 9(2):161–167
Gleeson T, Cuthbert M, Ferguson G, and Perrone D (2020a) Global groundwater sustainability, resources, and systems in the anthropocene. Annual Review of Earth and Planetary Sciences, Annual Reviews Inc., 431–463
Gleeson T and Richter B (2018) How much groundwater can we pump and protect environmental flows through time? Presumptive Standards for Conjunctive Management of Aquifers and Rivers, River Research and Applications, Wiley Online Library 34(1):83–92
Gleeson T, Wagener T, Döll P, Zipper SC, West C, Wada Y, Taylor R, Scanlon B, Rosolem R, and Rahman S (2021) GMD perspective: The quest to improve the evaluation of groundwater representation in continental-to global-scale models. Geoscientific Model Development, Copernicus GmbH 14(12):7545–7571
Gleeson T, Wang‐Erlandsson L, Porkka M, Zipper SC, Jaramillo F, Gerten D, Fetzer I, Cornell SE, Piemontese L, and Gordon LJ (2020b) Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resources Research, Wiley Online Library 56(4):e2019WR024957
Huggins X, Gleeson T, Castilla-Rho J, Holley C, Re V, and Famiglietti JS (2022) Groundwater in complex adaptive social-ecological systems. EarthArXiv,  https://doi.org/10.1111/gwat.13305
Jasechko S, Perrone D, Befus KM, Bayani Cardenas M, Ferguson G, Gleeson T, Luijendijk E, McDonnell JJ, Taylor RG, and Wada Y (2017) Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nature Geoscience, Nature Publishing Group 10(6):425–429
Kazemi GA, Lehr JH and Perrochet P (2006) Groundwater Age. Groundwater Age 42(4):1142
Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea‐level rise. Geophysical Research Letters, Wiley Online Library 38(17)
Korzoun VI, Sokolov AA, Budyko MI, Voskresensky KP, Kalinin GP, Konoplyantsev AA, Korotkevich ES, Kuzin PS, and Lvovich MI (1978) World water balance and water resources of the earth. Unesco Press
Llamas MR and Martínez-Santos P (2005) Intensive groundwater use: silent revolution and potential source of social conflicts. Journal of water resources planning and management. American Society of Civil Engineers, 337–341
Margat J, Foster S, and Droubi A (2006a) Concept and Importance of non-renewable resources. Non-Renewable Groundwater Resources, UNESCO Paris, France 10:13
Margat J, Foster S, and Droubi A (2006b) Concept and importance of non-renewable resources. Non-renewable groundwater resources: A guidebook on socially-sustainable management for water-policy makers. UNESCO Paris,, France 10:13–24
Margat J and Van der Gun J (2013) Groundwater around the world: A geographic synopsis. Crc Press
Maxwell RM, Condon LE, Kollet SJ, Maher K, Haggerty R, and Forrester MM (2016) The imprint of climate and geology on the residence times of groundwater. Geophysical Research Letters, Wiley Online Library 43(2):701–708
McDonald RI, Weber K, Padowski J, Flörke M, Schneider C, Green PA, Gleeson T, Eckman S, Lehner B, and Balk D (2014) Water on an urban planet: Urbanization and the reach of urban water infrastructure. Global Environmental Change, Elsevier 27:96–105
Mianabadi A, Derakhshan H, Davary K, Hasheminia SM, and Hrachowitz M (2020) A novel idea for groundwater resource management during megadrought events. Water Resources Management 34(5):1743–1755
Mianabadi A, Hasheminia SM, Davary K, Derakhshan H, and Hrachowitz M (2021) Estimating the aquifer’s renewable water to mitigate the challenges of upcoming megadrought events. Water Resources Management 35(14):4927–4942
Park C and Allaby M (2017) A dictionary of environment and conservation. Oxford University Press
Richey AS, Thomas BF, Lo M, Reager JT, Famiglietti JS, Voss K, Swenson S, and Rodell M (2015) Quantifying renewable groundwater stress with GRACE. Water Resources Research, Wiley Online Library 51(7):5217–5238
Scanlon BR, Longuevergne L, and Long D (2012) Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, Wiley Online Library 48(4)
Schilling OS, Cook PG, and Brunner P (2019) Beyond classical observations in hydrogeology: The advantages of including exchange flux, temperature, tracer concentration, residence time, and soil moisture observations in groundwater model calibration. Reviews of Geophysics, Wiley Online Library 57(1):146–182
Schulz S, Walther M, Michelsen N, Rausch R, Dirks H, Al-Saud M, Merz R, Kolditz O, and Schüth C (2017) Improving large-scale groundwater models by considering fossil gradients. Advances in Water Resources, Elsevier 103:32–43
Foster S, Kemper K, Garduno H, et al., (2005) Utilization of non-renewable groundwater a socially-sustainable approach to resource management. Technical Report, 10.13140/RG.2.1.4297.9925
Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, and Portmann FT (2010) Groundwater use for irrigation - A global inventory. Hydrology and Earth System Sciences 14(10):1863–1880
Sturchio NC, Du X, Purtschert R, Lehmann BE, Sultan M, Patterson LJ, Lu Z, Müller P, Bigler T, and Bailey K (2004) One million year old groundwater in the Sahara revealed by krypton‐81 and chlorine‐36. Geophysical Research Letters, Wiley Online Library 31(5)
Taylor R (2009) Rethinking water scarcity: The role of storage. Eos, Transactions American Geophysical Union, Wiley Online Library 90(28):237–238
Taylor RG, Scanlon B, Döll P, Rodell M, Beek R Van, Longuevergne L, Leblanc M, Famiglietti JS, and Edmunds M (2013a) Groundwater and climate change: Recent advances and a look forward. Nature Climate Change 3:322–329
Taylor RG, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, and Edmunds M (2013b) Ground water and climate change. Nature Climate Change, Nature Publishing Group 3(4):322–329
Voss CI and Soliman SM (2014) The transboundary non-renewable Nubian Aquifer System of Chad, Egypt, Libya and Sudan: Classical groundwater questions and parsimonious hydrogeologic analysis and modeling. Hydrogeology Journal, Springer 22(2):441–468
Wada Y, Van Beek LPH, Sperna Weiland FC, Chao BF, Wu Y, and Bierkens MFP (2012) Past and future contribution of global groundwater depletion to sea‐level rise. Geophysical Research Letters, Wiley Online Library 39(9)
Wada Y, Van Beek LPH, Van Kempen CM, Reckman JWTM, Vasak S, and Bierkens MFP (2010) Global depletion of groundwater resources. Geophysical Research Letters, Wiley Online Library 37(20)
Wada Y, Van Beek LPH, Viviroli D, Dürr HH, Weingartner R, and Bierkens MFP (2011) Global monthly water stress: 2, Water Demand and Severity of Water Stress. Water Resources Research, Wiley Online Library 47(7)
Winter TC (1998) Ground water and surface water: A single resource. Diane Publishing