ارزیابی ریسک آلودگی ناشی از نیترات در آبخوان دشت آذرشهر با استفاده از مدل های هوش مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آب زمین‌شناسی، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران.

2 استاد، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران.

3 دکتری آب زمین‌شناسی، گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران.

چکیده

دشت آذرشهر در حوضه آبریز دریاچه ارومیه، دارای منبع مهم آب زیرزمینی است و به علت رونق کشاورزی در معرض خطر آلودگی نیترات قرار دارد؛ لذا حفاظت از منابع آب زیرزمینی با شناسایی مناطق در معرض ریسک آلودگی ضروری است. در این مطالعه به منظور بررسی آسیب‌پذیری ذاتی و ریسک آلودگی از داده‌های زمین‌‎شناسی، داده‌های هیدروژئولوژیکی و ژئوفیزیکی و نیز نقشه رقومی ارتفاعی ماهواره SRTM با دقت مکانی 30 متر و درنهایت جهت صحت‎‌سنجی از غلظت آلاینده نیترات نمونه‌‎برداری شده از 35 منبع مختلف با پراکندگی و توزیع مناسب استفاده شده است. در پژوهش حاضر ریسک آلودگی آبخوان دشت آذرشهر با روش "منبع- مسیر- هدف" مورد بررسی قرار گرفته است. در این روش بعد از شناسایی منبع آلودگی، آسیب‌پذیری آبخوان به‌عنوان مسیر درنظر گرفته شد. برای ارزیابی آسیب‌پذیری، از روش DRASTIC بهبود یافته با استفاده از سه مدل فازی ساجنو (SFL)، الگوریتم درخت تصمیم (M5P) و الگوریتم زیر فضای تصادفی (RS) استفاده شد و در نهایت نقشه آسیب‌پذیری نسبت به آلاینده نیترات به دست آمد. از بین مد‌ل‌های هوش‌مصنوعی بر اساس بیشترین ضریب همبستگی (0/87=r) و کمترین میزان خطا (0/06=RMSE)، مدل M5P به‌عنوان بهترین مدل جهت ارزیابی آسیب‌پذیری آبخوان دشت آذرشهر انتخاب شد. در نهایت نقشه ریسک آلودگی نیترات از حاصل‌ضرب آسیب‌پذیری آبخوان (بر اساس مدل M5P) در سرعت جریان آب زیرزمینی به دست آمد. نتایج نشان داد ریسک آلودگی آبخوان نسبت به آلاینده نیترات در قسمتی از مرکز، جنوب و جنوب شرق آبخوان بالا است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Pollution Risk Caused by Nitrate in the Azarshahr Plain Aquifer Using Artificial Intelligence Models

نویسندگان [English]

  • Nasser Jabraili Andaryan 1
  • Ata Allah Nadiri 2
  • Maryam Gharekhani 3
1 Ph.D. Student in Hydrogeology, Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
2 Professor, Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
3 Ph.D. in Hydrogeology, Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
چکیده [English]

Azarshahr plain is one of the wide plains in Lake Urmia basin which has an important source of groundwater and it is at risk of nitrate pollution due to the agricultural prosperity in this plain. Therefore, it is necessary to protect these groundwater resources using the most suitable and inexpensive solutions by identifying the areas exposed to the risk of pollution. In this study, in order to investigate the inherent vulnerability and risk of contamination, geological data, hydrogeological information and geophysical data were used as well as the digital elevation map of SRTM satellite with a spatial accuracy of 30 meters. Also the concentration of nitrate contaminant sampled from 35 different sources with appropriate distribution was used for validation. The pollution risk of Azarshahr plain aquifer was investigated using "Source-Pathway- Receptor" method. In this method, after identifying the source of pollution, the aquifer vulnerability was considered as a pathway. Improved DRASTIC method by SFL, M5P and RS models were used to evaluate the aquifer vulnerability, then the vulnerability map to nitrate contaminant was obtained. Based on the highest correlation (r = 0.87) and the lowest error (RMSE = 0.06), the M5P model was selected as the best model for vulnerability assessment. Finally, the risk map of nitrate pollution was obtained by multiplying the vulnerability of the aquifer (based on the M5P model) and the velocity of the groundwater. The results showed that the pollution risk of aquifer to nitrate pollutant is high in the central part of the aquifer.

کلیدواژه‌ها [English]

  • Azarshahr Aquifer
  • Contamination Risk
  • Nitrate
  • M5P Model
Aller L, & Thornhill J (1987) DRASTIC: A standardized system for evaluating ground water pollution potential using hydrogeologic settings. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency
Barzegar R, Moghaddam A A, Deo R, Fijani E, & Tziritis E (2018) Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms. Science of the Total Environment 621:697-712
Bera A, Mukhopadhyay B P, & Das S (2022) Groundwater vulnerability and contamination risk mapping of semi-arid Totko river basin, India using GIS-based DRASTIC model and AHP techniques. Chemosphere 307:135831
Civita M (1990) Legenda unificata per le Carte della vulnerabilita dei corpi idrici sotterranei/ Unified legend for the aquifer pollution vulnerability Maps. Studi sulla Vulnerabilita degli Acquiferi
Das A, Maiti S, Naidu S, & Gupta G (2017) Estimation of spatial variability of aquifer parameters from geophysical methods: a case study of sindhudurg district, Maharashtra, India. Stochastic Environmental Research and Risk Assessment 31:1709-1726
Debeljak M, & Džeroski S (2011) Decision trees in ecological modelling. Modelling complex ecological dynamics: An introduction into ecological sodelling for students, teachers & scientists 197:209
Foster S S D (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In Van Dui- Jvenbooden W, Van Waegeningh Hg (eds) Vulnerability of soil and groundwater to pollutants. Proc Inf TNO Comm Hydrol Res, The Hague 38:69–86
Gharekhani M, Nadiri A A, Asghari Moghaddam A, & Sadeghfam S (2021) Investigation of contamination risk using optimized DRASTIC-L method with genetic algorithm in salmas alain Aquifer. Irrigation and Water Engineering 11(4):160-174 (In Persian)
Hosseini F S, Choubin B, Mosavi A, Nabipour N, Shamshirband S, Darabi H, Torabi Haghighi A (2020) Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method. Science of The Total Environment 711:135161
Jafari S M, & Nikoo M R (2016) Groundwater risk assessment based on optimization framework using DRASTIC method. Arabian Journal of Geosciences  9:1-14
Nadiri A A, Aghdam F, Razzagh S, Barzegar R, Jabraili-Andaryan N, & Senapathi V (2022) Using a soft computing OSPRC risk framework to analyze multiple contaminants from multiple sources; A case study from Khoy Plain, NW Iran. Chemosphere 308:136527
Nadiri A A, Gharekhani M, Khatibi R, Sadeghfam S, & Moghaddam A A (2017) Groundwater vulnerability indices conditioned by supervised intelligence committee machine (SICM). Science of the Total Environment 574:691-706
Nadiri A A, Jabraili N, & Gharekhani M (2019) Comparison of different combination methods ability on groundwater vulnerability assessment in Qorveh-Dehgolan palin aquifer. Iranian journal of Ecohydrology 6(3):821-836 (In Persian)
Nadiri A A, Sadeghfam S, Gharekhani M, Khatibi R, & Akbari E (2018) Introducing the risk aggregation problem to aquifers exposed to impacts of anthropogenic and geogenic origins on a modular basis using ‘risk cells’. Journal of Environmental Management 217:654-667
Nadiri A A, Sedghi Z, & Khatibi R (2021) Qualitative risk aggregation problems for the safety of multiple aquifers exposed to nitrate, fluoride and arsenic contaminants by a ‘Total Information Management’framework. Journal of Hydrology 595:126011
Neshat A, Pradhan B, & Javadi S (2015) Risk assessment of groundwater pollution using Monte Carlo approach in an agricultural region: an example from Kerman plain, Iran. Computers, Environment, and Urban Systems 50:66-73
Nobre R C M, Rotunno Filho O C, Mansur  W J, Nobre M M  M, & Cosenza C A N (2007) Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. Journal of Contaminant Hydrology 94(3-4):277-292
Rajput H, Goyal R, & Brighu U (2020) Modification and optimization of DRASTIC model for groundwater vulnerability and contamination risk assessment for Bhiwadi region of Rajasthan, India. Environmental Earth Sciences 79:1-15
Razzagh S, Nadiri A A, Khatibi R, Sadeghfam S, Senapathi V, & Sekar S (2021) An investigation to human health risks from multiple contaminants and multiple origins by introducing ‘Total Information Management’. Environmental Science and Pollution Research 28:18702-18724
Ribeiro L (2000) Desenvolvimento de um ındice para avaliar a susceptibilidade. ERSHA-CVRM, 1:8
Scanlon BR, Healy R W,  & Cook  P G (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal 10:18–39
Sener E, & Davraz A (2013) Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: The case of Egirdir Lake basin (Isparta, Turkey). Hydrogeology Journal 21(3):701-714
Taghavi N, Niven R K, Kramer M, & Paull D J (2023) Comparison of DRASTIC and DRASTICL groundwater vulnerability assessments of the Burdekin basin, Queensland, Australia. Science of The Total Environment 858:159945
Stempvoort D V,  Ewert L, & Wassenaar  L (1993) Aquifer vulnerability index: a GIS-compatible method for groundwater vulnerability mapping. Canadian Water Resources Journal 18(1):25-37
Wang  J, He J, & Chen H (2012) Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing plain, China. Science of the Total Environment 432:216-226
Wang Y,  & Witten I H (1996) Induction of model trees for predicting continuous classes. (Working paper 96/23). Hamilton, New Zealand: University of Waikato, Department of Computer Science
Xiong H, Wang Y, Guo X, Han J, MA C, & Zhang X (2022) Current status and future challenges of groundwater vulnerability assessment: A bibliometric analysis. Journal of Hydrology 615:128694