تحلیـل فراوانی منطقه‌ای ناایستای حداکثر بـــارش 24-ساعته در غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد مهندسی آبخیزداری، گروه مهندسی مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران.

2 دانشیار دانشکده منابع طبیعی و عضو قطب علمی مدیریت ریسک و بلایای طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران.

چکیده

در طی قرن گذشته فعالیت‌های انسانی و تغییرات اقلیمی ایستایی بسیاری از متغیرهای حدی را دست‌خوش تغییر قرار داده‌‌اند. لذا استفاده از تکنیک‌های آماری تحلیل فراوانی با پیش فرض‌های ایستایی داده‌ها جهت برآورد ریسک وقوع رویدادهای حدی بیش از این ممکن است قابل اطمینان نباشد. در پژوهش حاضر ضمن معرفی تکنیک‌‌ تحلیل فراوانی منطقه‌ای مبتنی بر روش شاخص سیل ناایستا، ریسک وقوع متغیر حداکثر بارش 24-ساعته به عنوان یک متغیر مولد سیل در زیرحوضه‌های غرب کشور بررسی شده است. بررسی ناایستایی داده‌ها نشان داد که از بین 53 ایستگاه‌ مورد مطالعه فقط چهار ایستگاه‌ خرم‌آباد و پل‌دختر با یک روند افزایشی و رامهرمز و ایذه با یک روند کاهشی معنی‌دار دارای ناایستایی هستند. بر اساس نتایج، ایستگاه‌های مورد مطالعه از لحاظ ریسک وقوع حداکثر بارش 24-ساعته به سه زیرناحیه همگن هیدرولوژیکی تفکیک شدند. نتایج پژوهش نشان داد که منطقه همگن دوم که عمدتاً شامل ایستگاه‌ها در استان‌های فارس، بوشهر، چهارمحال و بختیاری و کهگیلویه و بویراحمد هستند از ریسک وقوع حداکثر بارش‌های 24-ساعته شدیدتری نسبت به سایر مناطق مورد مطالعه برخوردار هستند. همچنین باتوجه به روند افزایشی حداکثر بارش‌های 24-ساعته در ایستگاه‌های پل‌دختر و خرم‌آباد مشخص شد که حداکثر بارش‌های 24-ساعته برآورد شده با دوره بازگشت 100 سال در این دو ایستگاه در صورت نادیده گرفتن ناایستایی داده‌ها به ترتیب 13/8 و 10/1 درصد کمتر از مقدار مورد انتظار برآورد خواهند شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonstationary Regional Frequency Analysis of Maximum 24-Hour Precipitation in West of Iran

نویسندگان [English]

  • Poria Mohit Esfahani 1
  • reza modarres 2
1 M.Sc. Graduate of Watershed Management, Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran.
2 Associate Professor, Department of Natural Resources, Center of Excellence on Risk Management and Natural Hazards, Isfahan University of Technology, Isfahan, Iran.
چکیده [English]

During last century, anthropogenic forcing and climate change have influenced the stationarity of the many extremes. Therefore, using of stationary pre-assumption-based Frequency Analysis (FA) techniques for estimating the risk of extremes may not be reliable anymore. In present study we introduced a nonstationary FA method to estimate risk of 24-hour maximum precipitation variable, as one of the major factors for generating floods in West of Iran. Nonstationarity assessments showed that among 53 investigated stations, only 4 stations (i.e., Khorramabad and Poldokhtar stations with increasing linear trends and Izeh and Ramhormuz stations with decreasing linear trends) have significant nonstationarity. Three hydrological homogeneous regions were characterized based on statistical properties of 24-hour maximum precipitation variable at study stations. Results revealed that stations in the Region_II, mostly including the stations in Fars, Chaharmahal and Bakhtiari, Bushehr and Kohgiluyeh and Boyerahmad Provinces, have higher risks for more severe 24-hour maximum precipitation compared to stations in other regions. Also, results showed that if nonstationarity in Khorramabad and Poldokhtar stations is ignored, 100-year quantiles of 24-hour maximum precipitation will underestimate around 10.1% and 13.8% in those stations.

کلیدواژه‌ها [English]

  • Frequency analysis
  • Trend test
  • Natural hazards risk
  • L-moments
  • Growth Curve
Adib A, Marashi SS (2019) Meteorological drought monitoring and preparation of long-term and short-term drought zoning maps using regional frequency analysis and L-moment in the Khuzestan province of Iran. Theoretical and Applied Climatology 137(1):77-87
Allahbakhshian-Farsani P, Vafakhah M, Khosravi-Farsani H, Hertig E (2020) Regional flood frequency analysis through some machine learning models in semi-arid regions. Water Resources Management 34(9):2887-2909
Chiang F, Mazdiyasni O, AghaKouchak A (2021) Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nature Communications 12(1):1-10
Dawyndt P, De Meyer H, De Baets B (2005) The complete linkage clustering algorithm revisited. Soft Computing 9(5):385-392
De Ruiter MC, Couasnon A, van den Homberg MJ, Daniell JE, Gill JC, Ward PJ (2020) Why we can no longer ignore consecutive disasters. Earth's Future 8(3):1-19
Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, 594p
Ghadami M, Raziei T, Amini M, Modarres R (2020) Regionalization of drought severity–duration index across Iran. Natural Hazards 103(3):2813-2827
Greenwood JA, Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form. Water Resources Research 15:1049–1054
Hosking JRM (1990) L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society 52:105–124
Hosking JRM )2019( Regional frequency analysis using L-moments. R package, version 3.3. Available from: http://CRAN.R-project.org/package=lmomRFA
Hosking JRM (1991) Approximations for use in constructing L-moment ratio diagrams. Research Rep. RC-16635, IBM Research Division, TJ Watson Research Center
Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resources Research 29(2):271–281
Hosking JRM, Wallis JR (1997) Regional frequency analysis: An approach based on l-moments. Cambridge University Press, 244 p
Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32(3):241-254
Kim H, Shin JY, Kim T, Kim S, Heo JH (2020) Regional frequency analysis of extreme precipitation based on a nonstationary population index flood method. Advances in Water Resources 146:1-43
Kreienkamp F (2021) Rapid attribution of heavy rainfall events leading to the severe flooding in Western Europe during July 2021. World Weather Attribution, 51p
Kulkarni A, von Storch H (1995) Monte Carlo experiments on the effect of serial correlation on the Mann–Kendall test of trend. Meteorologische Zeitschrift 4(2):82-85
Landwehr JM, Matalas NC, Wallis JR (1979) Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles. Water Resource Research 15(5):1055-1064
Leclerc M, Ouarda TB (2007) Non-stationary regional flood frequency analysis at ungauged sites. Journal of Hydrology 343(4):254-265
Libiseller C, Grimvall A (2002) Performance of partial Mann–Kendall tests for trend detection in the presence of covariates. Environmetrics: The official journal of the International Environmetrics Society 13(1):71-84
Malekinezhad H, Zare-Garizi A (2014) Regional frequency analysis of daily rainfall extremes using L-moments approach. Atmósfera 27(4):411-427
Mann HB (1945) Nonparametric tests against trend. Econometrica: Journal of the Econometric Society 13:245-259
Mehdi Nasab M (2020) Survey of 1 April flood in Kashkan Catchment in Lorestan Province and presenting solutions. Journal of Environment and Suprasectorial Development 5(67):17-30 (In Persian)
Merz B, Blöschl G, Vorogushyn S, Dottori F, Aerts JC, Bates P, …, and Macdonald E (2021) Causes, impacts and patterns of disastrous river floods. Nature Reviews Earth and Environment 2(9):1-18
Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: Whither water management?. Earth 4(20):573-574
Modarres, R, Sarhadi A (2010) Frequency Distribution of extreme hydrologic drought of southeastern Semiarid Region, Iran. Journal of Hydrologic Engineering 15(4):255-264
Mohammadi M, Talebi A (2020) Regional frequency analysis of maximum 24-hour precipitation in arid lands using the L-Moments approach (Case Study: Yazd Province). Desert Management 8(15):37-52 (In Persian)
Mohit Isfahani P, Modarres R (2020) The generalized additive models for nonstationary flood frequency analysis. Iran-Water Resources Research 16(3):376-387 (In Persian)
Nam W, Kim S, Kim H, Joo K, Heo JH (2015) The evaluation of regional frequency analyses methods for nonstationary data. Proceedings of the International Association of Hydrological Sciences 371(1):95–98
Nguyen TT, Nakatsugawa M, Yamada TJ, Hoshino T (2020) Assessing climate change impacts on extreme rainfall and severe flooding during the summer monsoon season in the Ishikari River basin, Japan. Hydrological Research Letters 14(4):155-161
O’Brien NL, Burn DH (2014) A nonstationary index-flood technique for estimating extreme quantiles for annual maximum streamflow. Journal of Hydrology 519:2040-2048
Rahimi D, Khoshhal Dastjerdi J, Rahimi D (2021) Trend analysis of maximum flood in the Karkheh basin. Journal of Natural Environmental Hazards 9(26):43-58 (In Persian)
Sharifi Garmdareh E, Vafakhah M, Eslamian S (2018) Regional flood frequency analysis using support vector regression in arid and semi-arid regions of Iran. Hydrological Sciences Journal 63(3):426-440
Special Panel on National Floods Report (SPNFR) (2020) Story, analyze, experiences and offers. 314p (In Persian)
Strnad F, Moravec V, Markonis, Y, Máca P, Masner J, Stočes M, Hanel M (2020) An index-flood statistical model for hydrological drought assessment. Water 12(4):1213-1229
Zamani R, Tabari H, Willems P (2015) Extreme streamflow drought in the Karkheh river basin (Iran): Probabilistic and regional analyses. Natural Hazards 76(1):327-346