ارائه راهبرد مطلوب در تخصیص آب با کاربرد تئوری بازی‌های غیرهمکارانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب دانشگاه فردوسی مشهد ایران

2 دانشیار گروه مهندسی آب دانشگاه فردوسی مشهد، مشهد، ایران

3 استاد گروه مهندسی آب دانشگاه فردوسی مشهد، ایران

چکیده

کاهش کیفیت آب و کمبود آن دو مشکل جدی است و مدیریت منابع آب مربوط به این مشکلات معمولاً با مناقشاتی همراه است. هدف از پژوهش حاضر، تحلیل رفتارها و تعاملات ذینفعان در حوضه کرج به‌منظور ارائه راهبرد مطلوب در سیاست‌گذاری پایدار منابع آب با در نظر گرفتن حفظ محیط‌زیست است. در این پژوهش، از تعاریف پایداری برای تحلیل نتایج حاصل از مدل گراف در نظریه بازی‌های غیر‌همکارانه استفاده شد. بازیکنان شامل سازمان جهاد کشاورزی، شرکت آب منطقه‌ای، کشاورزان و سازمان محیط‌زیست می‌باشند. نتایج حاصل از مدل گراف نشان داد که از بین تعاریف پایداری مورد استفاده در این پژوهش، تحلیل پایداری Non myopic برای تحلیل این بازی قابل اطمینان بوده و خروجی این پایداری، احتمال بیشتری در رخداد رفتار بازیکنان دارد. یکی از مطلوبترین نقاط تعادل، وضعیت پایه و نقطه تعادل دیگر وضعیتی است که کشاورزان برداشت غیر مجاز از کانال‌های آبیاری انجام می‌دهند که باعث وضعیت نامناسبی در آینده خواهد شد. لذا می‌توان با تعیین تشویق‌هایی از سوی شرکت آب منطقه‌ای به منظور همکاری کشاورزان و آموزش آن‌ها و نیز شناسایی و تنبیه متخلفان، مدیریت منابع آب را بهبود بخشید. در نهایت، نتایج نشان داد بکار بردن تعاریف پایداری مناسب، زمانیکه عدم اطمینان در مورد رفتار بازیکنان وجود داشته باشد، برای تجزیه و تحلیل مناقشه‌ای خاص، می‌تواند بینش ارزشمندی برای سیاست‌گذاری ایجاد نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Proposing an Optimal Strategy in Water Allocation Using Non-Cooperative Game Theory

نویسندگان [English]

  • Mohammad Nourollahi 1
  • Ali Naghi Ziaei 2
  • Kamran Davary 3
1 Water Structure Engineering, Ferdowsi University of Mashhad, Iran.
2 Assoc. Prof, Department of Water Engineering, Ferdowsi University of Mashhad, Mashhad
3 Professor, Water Engineering Department, Ferdowsi University of Mashhad, Iran.
چکیده [English]

Deteriorated quality and scarcity of water are two serious problems and the water resources management corresponding to these problems is often accompanied by conflict between consumers. The purpose of this study is to analyze the behaviors and interactions of stakeholders in the Karaj basin in order to provide optimal strategy in sustainable policy-making of water resources in this basin with respect to environmental protection. In this study, definitions of stability were used to analyze the results of the Graph model in non-cooperative game theory. Players include the Ministry of Agriculture, the Regional Water Company, the Farmers and the Department of Environment. The results of the Graph model showed that among the definitions of stability used in this study, Non-Myopic stability analysis is reliable for the analysis of this game and the output of this stability is more likely to occur in the behavior of players. One of the most desirable equilibrium states is the basic situation and the other equilibrium state is the situation in which farmers perform unauthorized withdrawals of irrigation canals, in which case an undesirable situation will occur in the future. Therefore, the water resources management in the basin can be improved by determining incentives from the regional water company for the cooperation of farmers and their training, as well as identifying and punishing violators. Finally, the results showed that using appropriate stability definitions can provide valuable insights for policy-making to analyze specific conflict, when there is uncertainty about player behavior.

کلیدواژه‌ها [English]

  • Equilibrium states
  • Stability definition
  • Graph model
  • Water resources management
  • Non-cooperative game theory
Al Radif A (1999) Integrated Water Resources Management (IWRM) an approach to face the challenges of next century and to avert future crises. Desalination 124(1-3):145-153
Becker N, Easter KW (1995) Water diversion in the great lakes basin analyzed in a game theory framework. Water Resources Management 9:221-242
Berkes F (1989) Common property resources: Ecology and community-based sustainable development. Belhaven, London
Bielsa J, Rosa D (2001) An economic model for water allocation in north eastern Spain. Water Resources Development 17(3):397-410
Blaikie PM, Brookfield H (1987) Land degradation and society. London: Methuen
Blomquist W (1992) Dividing the water: Governing groundwater in Southern California. Institute for Contemporary, San Francisco
Carraro C, Filar J A (1995) Control and game-theoretic models of the environment. Birkhäuser, Boston
Elimam L, Rheinheimer D, Connell C, Madani K (2008) An ancient struggle: A game theory approach to resolving the Nile conflict. In: Babcock RW, Walton R (eds) Proceeding of the 2008 world environmental and water resources congress. American Society of Civil Engineers, Honolulu, Hawaii, pp 1–10
Fang L, Hipel K, Kilgour D (1993) Interactive decision making: the graph model for conflict resolution. Wiley, New York, USA, 221p
Fang L, Hipel KW, Kilgour DM (1998) The graph model approach to environmental conflict resolution. Journal of Environmental Management 27(2):195-212
GetiranaACV, Malta VDF, de Azevedo JPS (2008) Decision process in a water use conflict in Brazil. Water Resources Managment 22(1):103–118
Gopalakrishnan C, Levy J, Li KW, Hipel KW (2005) Water allocation among multiple stakeholders: Conflict analysis of the Waiahole water project, Hawaii. International Journal of Water Resources Development 21(2):283–295
Heany JP, Dickinson RE (1982) Methods for apportioning the costs of a water resource project. Water Resources Research 18(3):476-482
Hipel KW, Kilgour DM, Fang L, Peng X (1997) The decision support system GMCR II in environmental conflict management. Applied Mathematics and Computation 83(2-3):117-152
Kilgour DM, Hipel KW) 2005(The graph model for conflict resolution: past, present, and future. Group Decision and Negotiation 14(6):441-460
Leete R, Donnay F, Kersemaekers S, Schoch M, and Shah M (2003) Global population and water. A UNFPA Report on Population and Development Strategies Series, number 6. UNFPA, New York
Lejano RP, Davos CA (1995) Cost allocation of multiagency water resource projects: Game theoretic approaches and case study. Water Resources Research 31(5):1387-1393
Lewandowski A (1979) A game-theoretical approach to modelling the behaviour of water users in a quality control problem. In: Findeisen W, Studies in Control methodology for Water resource Systems. Techn. Dept., Inst. Automat. Control, Techn. Uni. Warsaw, Warsaw, pp. 83-97
Li KW, Kilgour DM, Hipel KW (2004) Status quo analysis of the Flathead River conflict. Water Resources Research 40:W05S03
Ma J, Hipel KW, De M (2005) Strategic analysis of the James Bay hydro-electric dispute in Canada. Canadian Journal of Civil Engineering 32(5):868–880
Madani K (2010) Game theory and water resources. Journal of Hydrology 381(3-4):225-238
Madani K, Hipel KW (2007) Strategic insights into the Jordan River conflict. P 1-10. In: Kabbes, K.C. (Ed.), Proceeding of the 2007 World Environmental and Water Resources Congress, Tampa, Florida, American Society of Civil Engineers
Madani K, Hipel KW (2011) Non-cooperative stability definitions for strategic analysis of generic water resources conflicts. Water Resource Management 25(8):1949-1977
Nandalal KWD, HipelKW (2007) Strategic decision support for resolving conflict over water sharing among countries along the Syr Darya River in the Aral Sea Basin. Journal of Water Resources Planning and Management 133(4):289–299
Nash JF (1951) Non-cooperative games. Annals of Mathematics 54(2):286-295
Niksokhan MH, Kerachian R, Karamouz M (2009) A game theoretic approach for trading discharge Permitsin Rivers. Water Science and Technology 60(3):793-804
Noakes DJ, Fang L, Hipel KW, Kilgour DM (2003) An examination of the salmon aquaculture conflict in British Columbia using the graph model for conflict resolution. Fisheries Management and Ecology 10(3)123:137
Noori M, Emadi AR, Fazloula R (2020) Analyzing the interaction of agriculture and industry sectors in water allocation with the non-cooperative game approach. Journal of Water and Soil Conservation 27(1):145-161 (in Persian)
Okada N, Nakase D, Sakakibara H (1999) Effectiveness of the presentation of alternatives by coordinator in multi-purpose water resources development projects. In: Proceedings of IEEE SMC ‘99 (Systems, Man, and Cybernetics, 1999), vol 5. Tokyo, Japan, pp 949–954
Ostrom E, Gardner R, Walker J (1994) Rules, games, and common-pool resources. The University of Michigan Press, An Arbor, Michigan
Sheikhmohammady M, and Madani K (2008) Bargaining over the Caspian Sea-the largest Lake on the earth. In: Babcock RW, Walton R (Eds.), Proceeding of the 2008 World Environmental and Water Resources Congress, Honolulu, Hawaii. American Society of Civil Engineers. pp:1-9
Straškraba M, Gnauck AH (1985) Freshwater ecosystem: Modelling and simulation. Elsevier, Amsterdam, Oxfort, New York, Tokyo
Tisdell JG, Harrison SR (1992) Estimating an optimal distribution of water entitlements. Water Resources Research 28(12):3111-3117
UN-CSD (1994) Review of sectoral clusters, first phase: Human settlement and fresh water, fresh water resource. Report of the Secretary General of the UN, General Overview, Paragraphs 3-10
UNESCAP (2000) Principles and practices of water allocation among water-use sectors. ESCAP Water Resources Series No. 80, Bangkok, Thailand
Van der Veeren R, Tol R (2003) Game theoretic analyses of nitrate emission reduction strategies in the Rhine river basin. International Journal of Global Environmental Issues 3(1):74-103
Vieira ZM de CL, Braga CFC, Ribeiro MMR (2005) Conflict analysis as a decision support tool in urban water demand management. In: Savic DA, Bertoni JC, Mariño MA, Savenije HHG (eds) Sustainable water management solutions for large cities: the proceedings of the international symposium on sustainable water management for large cities (S2). IAHS 293. Foz do Iguaçu, Brazil, 3–9 April
Von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton. 776p
Wang L (2005) Cooperative water resources allocation among competing users. A Ph.D. Dissertation, the University of Waterloo, Waterloo, Ontario, Canada
Wang L, Fang L, Hipel KW (2003) Water resource allocation: A cooperative game approach. Journal of Environmental Informatics 2(1):11-22
Wei SK, Gnauck A (2007) Simulating water conflicts using game theoretical models for water resources management. In: Tiezzi, E., Marques, J.C., Brebbia, C.A., Jørgensen, S.E. Eds.), Ecosystems and Sustainable Development VI. WIT Press, Southampton, Boston, pp. 3-12
Wei S (2008) On the use of game theoretic models for water resources management. Ph.D. Thesis, Brandenburg University of Technology in Cottbus
Westmacott JR, Burn DH (1997) Climate change effects on the hydrologic regime within the Churchill-Nelson River Basin. Journal of Hydrology 202(1-4):263-279
Xu H, Hipel KW, Kilgour DM, Fang L (2018) Conflict resolution using the graph model: Strategic interactions in competition and cooperation. Cham: Springer International Publishing