خوشه بندی مکانی شبکه های آبیاری با استفاده از روش کلاسیک K-Means (مطالعه موردی شبکه آبیاری قزوین)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار/ گروه سازه های آبی، دانشگاه تربیت مدرس، تهران، ایران.

2 دانشجوی دکتری/گروه سازه های آبی، دانشگاه تربیت مدرس، تهران، ایران.

چکیده

بهبود عملکرد شبکه‌های آبیاری از را‌هکار‌های اساسی صرفه‌جویی در منابع آبی می‌باشد.  اولین گام برای بهبود عملکرد شبکه‌ها، ارزیابی وضع موجود و سپس ارائه راهکار جهت رفع مشکلات می‌باشد. یک گام موثر و کاربردی در ارزیابی و بهبود عملکرد، استخراج مناطق همگن شبکه کانال‌ها بر اساس خصوصیات فیزیکی و فنی می‌باشد. هدف اصلی از این تحقیق، پهنه‌بندی مکانی و کاربرد یک روش کمی جهت استخراج مناطق همگن فیزیکی شبکه‌های آبیاری و نمایش قابلیت این روش در یک شبکه آبیاری واقعی می‌باشد. تکنیک مورد استفاده جهت پهنه‌بندی مکانی، روش خوشه‌بندی کلاسیک K-Means است. داده‌های مورد استفاده به عنوان ورودی مدل خوشه‌بندی به‌صورت یک ماتریس 5×162 بعدی است که همان خصوصیات فیزیکی و فنی کانال‌های انتقال شبکه آبیاری قزوین می‌باشند. بر اساس شاخص صحت‌سنجی خوشه‌بندی دیویس- بولدین (DB)، تعداد بهینه خوشه‌ها برابر 10 خوشه بدست آمد. هر کدام از خوشه‌های بدست آمده معرف یک ناحیه همگن در سطح شبکه می‌باشد که مدیران شبکه را قادر خواهد ساخت دامنه تصمیم‌گیری‌های خود را از محدوده وسیعی در ابعاد یک شبکه به محدوده کوچک‌تری در ابعاد چند منطقه همگن محدود کاهش دهند.  این امر سبب سهولت مدیریت و ارزیابی و تصمیم‌گیری در سطح مناطق همگن و نیز صرفه‌جوئی در زمان و هزینه مدیریت خواهد شد. 

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Clustering of Irrigation Networks Using K-Means Method (Case Study of Ghazvin Irrigation Network)

نویسندگان [English]

  • M. J Monem 1
  • S. M Hashemi 2
1 Associate Professor, Water Structure Dep., Tarbiat Modares University, Tehran, Iran
2 PhD Candidate, Water Structure Dep., Tarbiat Modares University, Tehran, Iran
چکیده [English]

Improving the performance of water conveyance networks is one of the key issues in saving limited water resources. The first step for this improvement is performance evaluation and then presenting the solutions. One of the practical and efficient approches for performance improvement is to extract the homogenous area out of the irrigation network based on the physical and technical features. The main idea behind this research is to present a quantitative benchmark for exploring homogenous areas with similar physical attributes and present the abilites of this method for a real case study. K-Means clustering algorithm, is applied to spatial clustering of irrigation networks based on physical attributes. Data was arranged based on the “objects” and the “features” in the matrix language. Ghazvin irrigation network data was used to form the input matrix. This matrix consisted of 162 rows and 5 columns. Using Davies and Bouldin (DB) index as the cluster validity index, it has been shown that the optimum number of clusters is 10. Each cluster represented a homogenous area in the irrigation network district. Clustering reduces the dimension of assessments from a large extended irrigation district to a limited number of homogeneous regions and provide a context for better and easier decision making, performance evaluation, and allocation of facilities and budget to different regions.

 

کلیدواژه‌ها [English]

  • Irrigation Networks
  • K-means Clustering
  • Spatial regionalization
حیدریان، س. ا.، فرداد، ح.، منعم، م. ج.، لیاقت، ع.، قاهری، ع. و تشنه‌لب، م. (1382)، "به کارگیری رویکرد فازی در ارزیابی سیستم‌های آبیاری"، مجله تحقیقات مهندسی کشاورزی, 17(4): صص 47-63.
خلخالی، م.، منعم، م. ج.، و ابراهیمی ک. (1387)، "تدوین مدل پشتیبانی تصمیم برای ارزیابی و بهبود عملکرد شبکه‌های آبیاری و زهکشی"، مجله تحقیقات مهندسی کشاورزی، 9 (1): صص 125-140.
منعم، م. ج.، علیرضائی، م. ر. و صالحی طالشی، ا. (1381)، "ارزیابى عملکرد بهره‌بردارى ازشبکه‌هاى آبیارى به روش تحلیل پوششى داده‌ها"، مجله علوم و فنون کشاورزی و منابع طبیعی، 6 (4): صص 25-11.
Bruscoli, P., Bresci, E. and Preti, F. (2001), “Diagnostic analysis of an irrigation system in the andes region,” Agriculture Engineering International: CIGR Journal, 3(1), pp. 12-26.
Burt, C. (2001), Rapid Appraisal Process (RAP) and Benchmarking Explanation and Tools, FAO, Bangkok, 50p.
Davies, D. L. and Bouldin, D.W. (1979), “A cluster separation measure”, IEEE Transaction on Pattern Analysis and Machine Intelligence, 1(4), pp. 224-227.
Han, J. and Kamber, M. (2006), Data Mining: Concepts and Techniques, Elsevier Inc, San Francisco, 743p.
Johnson, R.A. and Wichern, D.W. (1999), Applied multivariate statistical analysis, John wiley & sons. New York, 550p.
Kim, D.W., Lee, K.H., and Lee, D. (2004), “On cluster validity index for estimation of the optimal number of fuzzy clusters,” Pattern Recognition, 37 (4), pp. 2009-2025.
Malano, H. and Burton, M. (2001), Guidelines for Benchmarking Performance in the Irrigation and Drainage Sector, FAO, IPTRID, Rome, 145p.
Malano, H. and Gao, G. (1992), “Ranking and classification of irrigation system performance using fuzzy set theory: case study in Australia and China,” Irrigation and Drainage Systems, 6 (2), pp. 129-148.
Oad, R. and Mc Cornick, P.G. (1989), “Methodology for assessing the performance of irrigation agriculture,” ICID Bulletin, 38 (1), pp. 42-53.
Theodoridis, S. and Koutroumbas, K. (2003), Pattern Recognition, Elsevier Press, USA, 837p.
Valente, J.O. and Pedrycz, W. (2007), Advances in Fuzzy Clustering and Its Applications. John Wiley & Sons Ltd, England, 434p.
Van der Heijden, F., Duin, R. P. W., de Ridder, D., and Tax, D. M. J. (2004), Classification, Parameter Estimation and State Estimation. John wiley & sons Ltd, England, 423p.