امکان‎سنجی فنی و مالی سامانه استحصال آب باران برای تولید آب شرب بسته‏بندی در شرایط تغییر اقلیم؛ مطالعه موردی، ساری، شمال ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

2 دانشجوی دکتری، گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

طی سال‌های اخیر، با توجه به افزایش جمعیت و عدم قطعیت تأمین منابع آب سالم، استفاده از سامانه‌­های جمع‌­آوری آب باران جایگاه ویژه‌‏ای یافته است. هدف از این تحقیق ارزیابی فنی و مالی این سامانه در تولید آب بسته‏‌بندی در دانشگاه علوم کشاورزی و منابع طبیعی ساری می­‌باشد. در گام اول با استفاده از داده­‌های تاریخی ایستگاه هواشناسی دشت‏‌ناز ساری و مدل اقلیمی GFDL-CM3،  مقدار بارش روزانه برای دوره 2047-2022 پیش‌نگری شد. به‌منظور تحلیل فنی و مالی سامانه‏هایی با سطوح آبگیر 200، 850 و 1700 مترمربع، از مدل روزانه بیلان آب و شاخص‎‌‏های مالی (IRR، NPV و B/C) استفاده شد. یافته‌ها نشان می‌دهد؛ با هدف تامین نیاز روزانه آب شرب بسته‌­بندی دانشگاه، افزایش ظرفیت تصفیه روزانه این سامانه، تأثیری بر عملکرد آن در این منطقه ندارد. از منظر شاخص مالی مخزن ذخیره با حجم 8، 20 و 40 مترمکعب به ترتیب برای سامانه­‌های با سطوح آبگیر 200، 850 و 1700 مترمربع مخزن مناسب است. شاخص‌‏های مالی سه‌‏گانه فوق به‏‌ترتیب 45 درصد، 917 میلیون ریال و 1/2 برای سطح آبگیر 200 متر مربع، 103 درصد، 4768 میلیون ریال و 1/31 برای سطح آبگیر 850 مترمربع و 117 درصد، 8918 میلیون ریال و 1/33 برای سطح آبگیر 1700 مترمربع می‏‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Technical and Economic Feasibility Assessment of a Rainwater Harvesting System for the Production of Packaged Drinking Water under Climate Change; The Case of Sari University in Northern Iran

نویسندگان [English]

  • Mohammad Ali Gholami Sefidkouhi 1
  • Zahra Bagheri Khalili 2
1 Associate Professor, Department of Water Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
2 Ph.D. Candidate, Department of Water Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
چکیده [English]

Due to the increase in population and the uncertainty of safe water supply, the use of rainwater harvesting systems has gained popularity in recent years. This research has evaluated the technical and financial feasibility of these systems in the production of packaged water at Sari University of Agricultural Sciences and Natural Resources. In the first step, daily rainfall was predicted for the period of 2022-2047 using the historical data of Dashtnaz weather station in Sari and those of the GFDL-CM3 climate model. The daily Water balance modeling and financial indicators (IRR, NPV, and B/C) were used to analyze the technical and financial aspects of the systems with catchment levels of 200, 850, and 1700 m2. Findings showed that aiming at supplying the daily requirement drinking water of the university, increasing the daily treatment capacity of this system has no effect on its performance in this area. According to the financial index, storage tanks with volumes of 8, 20, and 40 m3 are suitable for systems with catchment levels of 200, 850, and 1700 square meters, respectivel The financial indicators (IRR, NPV and B/C) were respectively 45%, 917 million Rials and 1.2 for the catchment area of 200 m2, 103%, 4768 million Rials and 1.31 for the catchment area of 850 m2, and 117%, 8918 million Rials and 1.33 for the catchment area of 1700 m2

کلیدواژه‌ها [English]

  • Financial Evaluation
  • Storage Tank Size
  • Daily Treatment Capacity
  • Sari
  • Climate Models
Abas P E & Mahlia T M I (2019) Techno-economic and sensitivity analysis of rainwater harvesting system as alternative water source. Sustainability 11(8):2365
Aladenola O O & Adeboye O B (2010) Assessing the potential for rainwater harvesting. Water Resources Management 24(10):2129-2137
Alim M A, Rahman A, Tao Z, Samali B, Khan M M, & Shirin S (2020) Feasibility analysis of a small-scale rainwater harvesting system for drinking water production at Werrington, New South Wales, Australia. Journal of Cleaner Production 270:122437
Arnell N W (1999) Climate change and global water resources. Global Environmental Change 9:S31-S49  
Barthwal S, Chandola-Barthwal S, Goyal H, Nirmani B, & Awasthi B (2014) Socio-economic acceptance of rooftop rainwater harvesting- A case study. Urban Water Journal 11(3):231-239 ‏
Basinger M, Montalto F, & Lall U (2010) A rainwater harvesting system reliability model based on nonparametric stochastic rainfall generator.  Journal of Hydrology 392(3-4):105-118 
Brooks K N, Ffolliott P F, & Magner J A (2012) Hydrology and the management of watersheds. John Wiley & Sons ‏
Chen Y & Xu Z (2005) Plausible impact of global climate change on water resources in the Tarim River Basin. Science in China Series D: Earth Sciences 48(1):65-73
Elmahdi A, ElGafy I, & Kheireldin K (2009) Global warming-water shortage and food security future planning interaction: System analysis approach (WBFSM) WRM-2009. Water Resource Management, Malta 9-11
Fang C L, Bao C, & Huang J C (2007) Management implications to water resources constraint force on socio-economic system in rapid urbanization: A case study of the Hexi Corridor, NW China. Water Resources Management 21(9):1613-1633 ‌
Fengtai G & Xiaochao M (2012) Study on rainwater utilization engineering mode in northern cities of China. Procedia Engineering 28:453-457 ‌
Fewkes A & Butler D (2000) Simulating the performance of rainwater collection and reuse systems using behavioural models. Building Services Engineering Research and Technology 21(2):99–106
GhaffarianHoseini A, Tookey J, GhaffarianHoseini A, Yusoff S M, & Hassan N B (2016) State of the art of rainwater harvesting systems towards promoting green built environments: a review. Desalination and Water Treatment 57(1):95-104
Ghisi E & Ferreira D F (2007) Potential for potable water savings by using rainwater and greywater in a multi-storey residential building in southern Brazil. Building and Environment 42(7):2512-2522
Gholami M A & Bagheri Khalili Z (2022) Quantity and quality assessment of rainwater extracted from the roof for drinking water. Water and Irrigation Management 12(3):659-673 (In Persian)‌
Haq S A (2017) Harvesting rainwater from buildings. Springer International Publishing Switzerland
Haque M M, Rahman A, Hagare D, & Kibria G (2013) Principal component regression analysis in water demand forecasting: An application to the Blue Mountains, NSW, Australia. Journal of Hydrology and Environment Research 1(1):49-59
Haque M M, Hagare D, Rahman A, & Kibria G (2014) Quantification of water savings due to drought restrictions in water demand forecasting models. Journal of Water Resources Planning and Management 140(11):04014035
Haque M M, Rahman A, & Samali B (2016) Evaluation of climate change impacts on rainwater harvesting.  Journal of Cleaner Production 137:60-69
Haque M M, Rahman A, Hagare D, Kibria G, & Karim, F (2015) Estimation of catchment yield and associated uncertainties due to climate change in a mountainous catchment in Australia. Hydrological Processes 29(19):4339-4349
Herrmann T & Schmida U (2000) Rainwater utilisation in Germany: Efficiency dimensioning, hydraulic and environmental aspects. Urban Water 1(4):307-316
Imteaz M A, Ahsan A, Naser J, & Rahman A (2011a) Reliability analysis of rainwater tanks in Melbourne using daily water balance model. Resources, Conservation and Recycling 56(1):80-86
Imteaz M A, Shanableh A, Rahman A, & Ahsan A (2011b) Optimisation of rainwater tank design from large roofs: a case study in Melbourne, Australia. Resources, Conservation and Recycling 55(11):1022-1029
Islam M M, Afrin S, Tarek M H, & Rahman M M (2021) Reliability and financial feasibility assessment of a community rainwater harvesting system considering precipitation variability due to climate change. Journal of Environmental Management 289:112507
Islam M M, Chou F F, & Kabir M R (2011) Feasibility and acceptability study of rainwater use to the acute water shortage areas in Dhaka City, Bangladesh. Natural Hazards 56(1):93-111
Jenkins D, Pearson F, Moore E, Kim S J, & Valentine R (1978) Feasibility of rainwater collection systems in California. Water Resources Centre, University of California No. 173
Karim M R, Bashar M Z I, & Imteaz M A (2015) Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh. Resources, Conservation and Recycling 104:61-67 ‌
Kim Y & Han M (2008) Rainwater storage tank as a remedy for a local urban flood control.  Water Science and Technology: Water Supply 8(1):31-36 ‏
Kloss C & Lukes R (2008) Green streets: Managing wet weather with green infrastructure municipal handbook. U.S. Environmental Protection Agency, doi: EP A-833-F-08-009
Kolavani N J & Kolavani N J (2020) Technical feasibility analysis of rainwater harvesting system implementation for domestic use. Sustainable Cities and Society 62:102340 ‌
Lange J, Husary S, Gunkel A, Bastian D, & Grodek T (2012) Potentials and limits of urban rainwater harvesting in the Middle East.  Hydrology and Earth System Sciences 16(3):715-724 ‏
Liaw C-H & Tsai Y-L (2004) Optimum storage volume of rooftop rain water harvesting systems for domestic Use. Journal of the American Water Resources Association 40:901–912
Lima C A S, de Souza R S, Kaufmann Almeida A, & Kaufmann de Almeida I (2021) Economic feasibility of a rainwater harvesting system in a residential condominium in the Brazilian Midwest. International Journal of Sustainable Engineering 14(6):1950-1961 ‌
Lye D J (2009) Rooftop runoff as a source of contamination: a review. Science of the total environment 407(21):5429-5434
Madani K (2005) Iran’s water crisis; inducers, challenges and counter-measures. ERSA 45th Congress of the European Regional Science Association, Amsterdam. ‏
Madani K, AghaKouchak A, & Mirchi A (2016) Iran’s socio-economic drought: challenges of a water-bankrupt nation.  Iranian Studies 49(6):997-1016
Meera V & Mansoor Ahammed M (2018) Factors affecting the quality of roof-harvested rainwater. Urban Ecology, Water Quality and Climate Change 195-202
Palla A, Gnecco I, Lanza L, & La Barbera P (2012) Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resources, Conservation and Recycling 62:71-80
Rahimi R & Rahimi M (2018) Spatial and temporal analysis of climate change in the future and comparison of SDSM, LARS-WG and artificial neural network downscaling methods (Case study: Khuzestan Province). Iranian journal of Ecohydrology 5(4):1161-1174 (In Persian)‌
Rahman A, Keane J, & Imteaz M A (2012) Rainwater harvesting in Greater Sydney: water savings, reliability and economic benefits. Resources, Conservation and Recycling 61:16-21
Ren L, Wang M, Li C, & Zhang W (2002) Impacts of human activity on river runoff in the northern area of China. Journal of Hydrology 261(1-4):204-217
Sadoddin A, Bai M, & Naeimi A (2015) Technical and economic feasibility study of rooftop rainwater harvesting system) Case Study: Gorgan University of Agricultural Sciences and Natural Resources).  Journal of Water and Soil Conservation 21(6):27-50 (In Persian)‌
Severis R M, da Silva F A, Wahrlich J, Skoronski E, & Simioni F J (2019) Economic analysis and risk-based assessment of the financial losses of domestic rainwater harvesting systems.  Resources Conservation and Recycling 146:206-217 ‌
Shahid S, Harun S B, & Katimon A (2012) Changes in diurnal temperature range in Bangladesh during the time period 1961-2008. Atmospheric Research 118:260-270
Steffen J, Jensen M, Pomeroy C A, & Burian S J (2013) Water supply and stormwater management benefits of residential rainwater harvesting in US cities. Journal of the American Water Resources Association 49(4):810-824
Taran F & Mahtabi G (2016) Investigation of supplying water requirements in different parts of a city through rainwater harvesting; a case study Bonab, Iran. Irrigation and Water Engineering 7(1):40-53 (In Persian)
Teston A, Geraldi M S, Colasio B M, & Ghisi E (2018) Rainwater harvesting in buildings in Brazil: A literature review.  Water 10(4):471 ‏
Wallace C D, Bailey R T, & Arabi M (2015) Rainwater catchment system design using simulated future climate data. Journal of Hydrology 529:1798-1809
Yuan T, Fengmin L, & Puhai L (2003) Economic analysis of rainwater harvesting and irrigation methods, with an example from China.  Agricultural Water Management 60(3):217-226 ‏
Zavala M Á L, Prieto M J C, & Rojas C A R (2018) Rainwater harvesting as an alternative for water supply in regions with high water stress.  Water Supply 18(6):1946-1955