ارزیابی مصرف آب بخش کشاورزی و تأثیر افزایش ضریب خودکفایی محصولات زراعی بر بیلان منفی آب کشور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مهندسی منابع آب، دانشگاه تربیت مدرس، تهران، ایران.

2 استاد و عضو هیئت علمی گروه مهندسی منابع آب، دانشگاه تربیت مدرس، تهران، ایران.

3 دانشیار، مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات آموزش و ترویج کشاورزی، البرز، ایران.

چکیده

برآورد مصرف آب بخش کشاورزی براساس مبانی غیردقیق، موجب سیاست‌گذاری­‌های غیرواقع‌بینانه، بارگزاری­‌های بیشتر و تشدید بحران آب موجود کشور می‌شود. دراین راستا، استفاده از داده و اطلاعات وسیع­تر- بخصوص بیلان منابع آب که کمتر مورد توجه بوده است- می­تواند در تدقیق این برآورد مؤثر باشد. در این تحقیق، با توسعه چارچوبی که براساس گروه‌بندی محصولات کشاورزی و مفهوم «ردپای آب» است، این مهم دنبال شد. در چارچوب پیشنهادی، یک مدل بهینه‌­سازی نیز درنظر گرفته شد که تبعات سیاست­‌های بالادستی در خصوص افزایش ضریب خودکفایی محصولات کشاورزی را بر بیلان آب کشور در بهینه‌­ترین شکل مدیریتی مورد بررسی قرار دهد. بر این اساس در دوره آماری مورد بررسی، مصرف بخش کشاورزی برای سال 1397 حدود 64 میلیارد مترمکعب برآورد شد که همراه با تراز 5/5- میلیارد مترمکعب است. همچنین، اهداف برنامه ششم توسعه درخصوص افزایش تولید سه گروه محصول دانه­‌های روغنی، گیاهان قندی و ذرت دانه­‌ای که به ترتیب 3/2، 1/4 و 3/2 برابر تولید آن در سال 1397 بوده، در 3 سناریوی مدیریتی ارزیابی شد. نتایج نشان داد، با گسترش سطح کشت فعلی برای حصول این اهداف، تراز آب کشور تا 12/5- میلیارد مترمکعب افزایش خواهد یافت. با این پیش فرض و 30 درصد کاهش سبزیجات و میوه­‌های جالیزی، تراز به 10/5- و در بهینه­‌ترین الگوی تولید محصولات در استان­ها به 8/5- میلیارد مترمکعب خواهد رسید. آنچه آمد، زیرساختی برای برآورد مصرف آب بخش کشاورزی، کاهش عدم قطعیت­‌ها و تبیین تبعات افزایش ضریب خودکفایی بر بیلان منابع آب بود، با این حال همچنان ارتقاء آن لازم به پیگیری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Agricultural Water Consumption and Impact of Increasing Crops Self-Sufficiency Rate on Iran's Negative Water Balance

نویسندگان [English]

  • Fatemeh Mirzaie Nodoushan 1
  • Saeed Morid 2
  • Hossein Dehghanisanij 3
1 Ph.D. in Water Resources Engineering, Tarbiat Modares University, Tehran, Iran.
2 Professor, Department of Water Resources Engineering, Tarbiat Modares University, Tehran, Iran.
3 Associate Professor, Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Alborz, Iran.
چکیده [English]

Estimation of agricultural water consumption with unrealistic bases causes more aggravation of the current Iran water crisis. Accordingly using broader information, especially water budget components which received less attention, can be effective in enhancing such estimates. To this aim, this study developed a framework based on grouping of agricultural crops and the concept of "water footprint". The framework also includes an optimization module to examine consequences of the policies such as increasing self-sufficiency rates of agricultural crops under best optimum management on water budget. Accordingly, the consumption of agricultural sector for 2017 was estimated to be 64 BCM, which was associated with a negative balance of 5.5 BCM. Furthermore, the targets of the 6th national development plan (2016-2021) regarding three crop groups including oil seeds, sugar crops and maize were examined (target values were respectively about 3.2, 1.4 and 3.2 times of their productions in 2017). The results showed that by expansion of the cultivation area to achieve these targets, country’s negative water budget will increase to -12.5 BCM/yr. With the same assumption and a 30% reduction in vegetables and fruits, the negative budget would reduce to -10.5 and with the most optimum provincial crop patterns, it reaches -8.5 BCM/yr. What investigated here was an attempt for improving the estimation of agriculture water consumption, reducing related uncertainties and elucidating the alerting consequences of increasing self-sufficiency rates on the water balance. Nonetheless follow ups are needed to improve such methodologies.

کلیدواژه‌ها [English]

  • Water Footprint
  • Agricultural Sector Consumption
  • Crop Products Self-Sufficiency Policies
  • Water Balance
Abbasi F, Nasseri A, Akbari M, Baghbani J and Abbasi N (2017) Analysis of water consumption in agricultural sector. Technical analyzes for in Iran's agricultural management and engineering, Institute of Technical and Agriculture Research 1:18-25 (In Persian)
Chapagain A K, Hoekstra A Y, Savenije H H G, Gautam R (2006) The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecololgical Economics 60(1):186–203
Esmaeili Fard M, Kaveh Firoz H (2017) Pathology of the water policies in Iran. Socio-Cultural Research Journal of Rahbord 5(21):169-97 (In Persian)
Falkenmark M, Rockström J (2004) Balancing water for humans and nature: The new approach in ecohydrology. Earthscan, London 272 p
Hoekstra A Y, Chapagain A K (2007) Water footprints of nations: water use by people as a function of their consumption pattern. Water Resources Management 21(1):35–48
Hoekstra A Y, Hung P Q (2002) Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. Value of Water Research Report Series No. 11, UNESCO-IHE, Delft, The Netherlands, 120p
Hoekstra A Y, Chapagain A K, Aldaya M M, Mekonnen M M (2011) The water footprint assessment manual: Setting the global standard. Earthscan, London,UK, 203p.
Iran Chamber of Commerce, Industries, Mines & Agriculture (2017) Personal Communication.
Islami R, Rahimi A (2019) Policymaking and water Crisis in Iran. Quarterly journal of Macro and Strategic Policies 7(3):410-435 (In Persian)
Karandish F, Hoekstra A (2017) Informing national food and water security policy through water footprint assessment: the case of Iran. Water 9:831
Karimi P, Bastiaanssen W G, Molden D (2013) Water Accounting Plus (WA+)–a water accounting procedure for complex river basins based on satellite measurements. Hydrology and Earth System Sciences 17(7):2459-2472
Karimov A, Molden D, Khamzina T, Platonov A, Ivanov Y (2012) A water accounting procedure to determine the water savings potential of the Fergana Valley. Agricultural Water Management 108:61-72
Mekonnen M M, Hoekstra A Y (2010) The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences 15(5):1577–1600
Mesgaran M B, Azadi P (2018) A national adaptation plan for water scarcity in Iran. Working
Paper 6, Stanford Iran 2040 Project, Stanford University
Ministry of Agriculture-Jahad (2019a) Agricultural statistics of the crop year 2017-2018, Volume 1. Technical Report (In Persian)
Ministry of Agriculture-Jahad (2019b) Agricultural statistics of the crop year 2017-2018, Volume 2. Technical Report (In Persian)
Ministry of Agriculture-Jahad (2019c) Agricultural statistics of the crop year 2017-2018, Volume 3. Technical Report (In Persian)
Ministry of Agriculture-Jahad (2022) Report on area, production and yield of crop products year 2020-2021. Technical Report (In Persian)
Mohammadi A, Rizi A P, Abbasi N (2019) Field measurement and analysis of water losses at the main and tertiary levels of irrigation canals: Varamin irrigation scheme, Iran. Global Ecology and Conservation, 18, e00646
National Water Document (2000) Crops net water requirement. Iran Meteorological Department, Ministary of Agriculture (in Persian)
Omidi T, Bagheri A, Heidari N (2018) Exploring export-import strategies and pri-orities of agricultural products based on the concept of virtual water. Faculty of Agriculture, Tarbiat Modares University, 258p
Perry C, Steduto P, Karajeh F (2017) Does improved irrigation technology save water? A review of the evidence. Food and Agriculture Organization of the United Nations, Cairo, 42
Qureshi M E, Schwabe K, Connor J, Kirby M (2010) Environmental water incentive policy and return flows. Water Resources Research 46(4)
Schyns J F, Hoekstra A Y (2014) The water footprint in Morocco: The added value of water footprint assessment for national water policy. Value of Water Research Report Series No. 67, UNESCO-IHE, Delft, the Netherlands
Six Five-Year Development Plan 2016-2021 (2016) http://dolat.ir/detail/281959
Soltani A, Alimagham M, Nehbandani A, and et al. (2020) Modeling plant production at country level as affected by availability and productivity of land and water. Agricultural Systems 183:102859
Van Oel P, Mekonnen M, Hoekstra A Y (2009) The external water footprint of The Netherlands: Geographically-explicit quantification and impact assessment. Ecological Economics 69(1):82–92
Verma S, Kampman D A, Van der Zaag P, Hoekstra A Y (2009) Going against the flow: A critical analysis of inter-state virtual water trade in the context of India’s National River Linking Programme. Physics and Chemistry of the Earth 34(4-5):261–269
Water and Waste Water Macro Planning Office (2016) Ministry of Energy.
Water Resources Basic Studies Office (2014) Personal communication
Zhuo L, Mekonnen M M, Hoekstra A Y (2016) Water footprint and virtual water trade of China: Past and future. Value of Water Research Report Series No. 69, UNESCO-IHE, Delft, the Netherlands, 70p