مطالعه آزمایشگاهی و مدلسازی فرآیند زیست‌پالایی آلودگی‌های نفتی در آب زیرزمینی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار /گروه مهندسی آب، دانشکده علوم کشاورزی، دانشگاه گیلان

2 استاد /گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران.

3 استاد /گروه علوم خاک، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران.

4 استاد/ گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران.

5 کارشناس ارشد/ هیدروژئولوژی و مدلسازی آب زیرزمینی، شرکت آرکادیس کانادا، تورنتو، کانادا.

چکیده

امروزه، آلودگی سفره‌های آب زیرزمینی، یکی از جدی‌ترین مشکلات زیست محیطی در سراسر جهان می‌باشد. از مهم‌ترین این آلاینده‌ها، آلاینده‌های نفتی و ترکیبات آن می‌باشد که در اثر نشت و تراوش هنگام ذخیره‌سازی و یا انتقال، با نفوذ به خاک، منابع آب زیرزمینی را آلوده می‌کند. این ترکیبات دارای ساختار پیچیده شیمیایی و قابلیت‌های حل مختلف در آب‌زیرزمینی می‌باشند و بسیاری از این ترکیبات توسط میکروارگانیسم‌های موجود در آب تجزیه می‌شوند. در این تحقیق، زیست‌پالایی آب‌های زیرزمینی آلوده به ترکیبات نفتی (BTEX) در مقیاس آزمایشگاهی مورد بررسی قرار می‌گیرد. آزمایشات در یک تانک شنی دوبعدی انجام گردید. به منظور شبیه‌سازی رفتار میکروارگانیسم‌ها در تجزیه زیستی آلاینده‌ها از مدل موند دوگانه در کد RT3D استفاده گردید. مقایسه نتایج حاصل از شبیه‌سازی تجزیه بیولوژیکی BTEX با داده‌های آزمایشگاهی نشان داد که غلظت‌های مشاهده شده و محاسبه شده، با در نظر گرفتن شرایط آزمایشگاهی و مدلسازی ریاضی با هم مطابقت دارند. همچنین نتایج حاصل از اجرای مدل نشان داد که در شرایط با زیست‌پالایی و بدون زیست‌پالایی به ترتیب پس از گذشت سه و 27 ماه مجموع آلودگی در کل تانک به صفر می‌رسد. مقایسه این دو عدد حاکی از اهمیت فرآیند زیست‌پالایی در پاکسازی آب زیرزمینی آلوده به هیدروکربن‌های نفتی می‌باشد. در مجموع روش پیشنهاد شده در این تحقیق، جداسازی باکتری و تصفیه موفقیت‌آمیز بوده و می‌توان این روش را در مقیاس‌های بزرگ پیشنهاد نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental investigation and modeling of bioremediation process of petroleum contamination in groundwater

نویسندگان [English]

  • Somaye Janatrostami 1
  • Majid Kholghi 2
  • Hosseinali Alikhani 3
  • Abdolhossein Hoorfar 4
  • Kourosh Mohammadi 5
1 Assistant Professor, Department of Water Engineering, College of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Professor, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran.
3 Professor, Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran
4 Professor, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran.
5 Senior Hydrogeologist and Groundwater Modeller, Arcadis Canada, Toronto, Canada
چکیده [English]

Today, groundwater contamination has become a major environmental issue around the world. Petroleum products affect groundwater quality at many sites across the country. It mainly results from leaking or seeping of products from storage tanks or transferring pipes. These products are typically multicomponent organic mixtures composed of chemicals with varying degrees of water solubility. Many of the petroleum products are amenable to biological degradation in the aqueous phase by naturally occurring microorganisms in the subsurface. To create and maintain conditions that are conductive to microbial activity within the contaminated aqueous-phase is the main focus of this research. BTEX was selected as the petroleum contaminant to be used in a laboratory experiment. A two-dimensional sand tank was built and BTEX was injected into the sand at top of the unsaturated zone. In order to simulate the behaviour of the bacteria and to predict the long-term remediation program, RT3D model with double Monod algorithm was selected. The comparison of the observed data in laboratory experiment with simulated results showed that the calibrated model can simulate the BTEX movement and biodegradation, satisfactory. Using the calibrated model indicated that complete remediation would occur after three months with biodegradation and 27 months without biodegradation. This proved that how important is the biodegradation in long-term remediation projects. In addition, the proposed methodology in this research for isolating the bacteria and remediation was successful and can be proposed to be implemented in larger scale.

کلیدواژه‌ها [English]

  • Groundwater
  • Bioremediation
  • Microorganism
  • BTEX
  1. Asadolahfardi G, Khodadadi A, Yaghoobi M (2010) Parametric analysis for the fate of Methyl Tertiary Butyl Ether (MTBE) in groundwater resources from a fuel storage tank in northern Tehran. Iran-Water Resources Research 6(3):1-11 (In Persian)
  2. Borden RC, Bedient PB (1986) Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation 1. Theoretical development. Water Resources Research 22:1973-1982
  3. Cha KY, Borden RC (2012) Impact of injection system design on ISCO performance with permanganate - Mathematical modeling results. Journal of Contaminant Hydrology 128(1-4):33-46
  4. Chilakapati A (1995) RAFT a simulator for reactive flow and transport of groundwater contaminants. Technical Report PNL-10636, Pacific Northwest Laboratory, Richland, WA
  5. Clement TP, Hooker BS, Skeen RS (1996) Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth. Ground Water 34(5):934-942
  6. Clement TP, Johnson CD (1998) Modeling natural attenuation of chlorinated solvent plumes at the Dover Air Force Base area-6 site. Draft Report, Pacific Northwest National Laboratory
  7. Clement TP, Johnson CD, Sun Y, Klecka GM (2000) Natural attenuation of chlorinated ethene compounds: Model development and field-scale application at the Dover site. Journal of Contaminant Hydrology 42(2):113-140
  8. Clement TP, Peyton BM, Skeen RS, Jennings DA, Petersen JN (1997) Microbial growth and transport in porous media underdenitrification conditions: Experiments and simulations. Journal of Contaminant Hydrology 24:269-285
  9. Clement TP, Sun BS, Petersen JN (1998) Modeling multispecies reactive transport in groundwater. GWMR, 79- 92
  10. Corseuil HX, Gomez DE, Schambeck CM, Ramos DT, Alvarez PJJ (2015) Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation. Journal of Contaminant Hydrology 174:1-9
  11. De Blanc PC, Speitel GE, McKinney DC (1996) A three-dimensional, multi-component model of non-aqueous phase liquid flow and biodegradation in porous media. Paper Presented at Conference on Non-Aqueous Phase Liquids in the Subsurface Environment: Assessment and Remediation. American Society of Civil Engineers, Washington, Novomber
  12. Huang YF, Huang GH, Wang GQ, Lin QG, Chakma A (2006) An integrated numerical and physical modeling system for an enhanced in situ bioremediation process. Environmental Pollution 144:872-885
  13. Johnson CD, Skeen RS, Leigh DP, Clement TP, Sun Y (1998) Modeling natural attenuation of chlorinated ethenes at a Navy site using the RT3D code. Proceedings of WESTEC 98 Conference, Sponsored by Water Environmental Federation, Orlando, Florida, October 3-7th
  14. Kambhu A, Comfort S, Chokejaroenrat C, Sakulthaew C (2012) Developing slow-release persulfate candles to treat BTEX contaminated groundwater. Chemosphere 89(6):656- 664
  15. Khajeh M,  Mosavi-Zadeh  F  (2012)  Response surface  modeling  of  ultrasound- assisted dispersive  liquid-  liquid  microextraction  for determination  of  benzene,  toluene  and  xylene in water sample.  Bulletin of Environmental Contamination and Toxicology 89:38-43
  16. Konikow LF, Bredehoeft JD (1978) Computer model of two-dimensional solute transport and dispersion in ground water. USGS - Water Resources, Book 7, chap. C2, 90p
  17. Lu G, Zheng C, Clement TP (1999) Simulating natural attenuation of BTEX at the Hill Air Force Base in Utah. Ground Water 37(5):707-717
  18. Molz FJ, Liu HH, Szulga J (1997) Fractional brownian motion and fractional gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions. Water Resources Research 33(10):2273-2286
  19. Oostrom M, Rockhold ML, Thorne PD, Last GV, Truex MJ (2006) Carbon tetrachloride flow and transport in the subsurface of the 216-Z-18 Crib and 216-Z-1A tile field at the hanford site: Multifluid flow simulations and conceptual model update. PNNL-15914, Pacific Northwest National Laboratory, Richland, Washington
  20. Rifai HS, Borden RC, Wilson JT, Ward CH (1995) Intrinsic bioattenuation for subsurface restoration. Battelle Press, Columbus, OH. 3(1):1-29
  21. Rifai HS, Haasbeek JF, Bedient PB, Wilson J (1987) Bioplume II computer model of two-dimensional contaminant transport under the influence of oxygen-limited biodegradation in ground water (for microcomputers). Model-Simulation, 103p
  22. Schroth MH, Istok JD, Selker JS, Oostrom M, White MD (1998) Multifluid flow in bedded porous media: Laboratory experiments and numerical simulations. Advances in Water Resources 22:169-183
  23. Semprini L, Kitanidis PK, Kampbell DH, Wilson JT (1995) Anaerobic transformation of chlorinated aliphatic hydrocarbons in a sand aquifer based on spatial chemical distributions. Water Resources Research 31(4):1051-1062
  24. Sun Y, Clement TP (1998) A decomposition method for solving coupled multispecies reactive transport problems. Transport in Porous Media Journal 1404:1-20
  25. Sun Y, Petersen JN, Clement TP, Hooker BS (1999) Effects of reaction kinetics on predicted concentration profies during subsurface bioremediation. Journal of Contamianant Hydrology 31:359-372
  26. Thibodeau P, Sherry NV, Burgess B, Vierkant G (2007) Optimizing enhanced reductive dechlorination design using fate-and-transport modeling. Battelle Press-9th International In Situ and On-Site Bioremediation Symposium 2:983-991
  27. Waddill DW, Parker JC (1997) Recovery of light, non-aqueous phase liquid from porous media: laboratory experiments and model validation. Journal of Contaminant Hydrology 27(1-2):127-155
  28. Wipfler EL, Ness M, Breedveld GD, Marsman A, Van der Zee SE (2004) Infiltration and redistribution of LNAPL into unsaturated layered porous media. Journal of Contaminant Hydrology 71(1-4):46-66
  29. Zhang YK, Neuman SP (1990) A quasi-linear theory of non-Fickian and Fickian subsurface dispersion, 2. Application to Anisotropic Media and the Borden Site. Water Resources Research 26(5):903-913