تغییرات مکانی و زمانی روند در دما و بارش حوضه آبریز فرامرزی ارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی منابع آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران.

2 استاد، گروه مهندسی و مدیریت منابع آب، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران.

3 استادیار، پژوهشکده مطالعات و تحقیقات منابع آب، موسسه تحقیقات آب، تهران.

4 کارشناسی ارشد، عمران- آب، رئیس گروه رودخانههای مرزی و منابع آب مشترک شمال غرب کشور، دفتر رودخانه های مرزی و منابع آب مشترک، وزارت نیرو، تهران.

چکیده

رودخانه فرامرزی ارس طی سال­‌های اخیر، روند کاهشی قابل‌­توجهی در نقطه ورودی سد ارس داشته است. به‌­منظور علت‌­یابی این مشکل، به ارزیابی روند تغییرات متغیرهای هواشناسی در این حوضه پرداخته شد. به‌­سبب فرامرزی بودن منطقه مطالعاتی و نبود دسترسی به داده­‌های مشاهداتی، از محصولات ماهواره­ای TRMM3B43V71 و PERSIANN_CDR و پایگاه داده­‌های اقلیمی CRU2 به‌عنوان منابع جایگزین استفاده شد. ارزیابی محصولات بارشی بر اساس معیارهای آماری نشان داد که TRMM3B43V7 با ضریب همبستگی 0/87 و 0/74 و ریشه دوم میانگین مربعات خطا 65/64 و 84/56 میلی­متر و همچنین مقدار اریبی 6/75 و 18/6 درصد، به ترتیب در ایستگاه‌های باران‌­سنجی قارص و ماکو بهترین عملکرد را داشته است. همچنین، پایگاه داده­‌های اقلیمی CRU با ضریب همبستگی بالا و RMSE پایین و تنها با 3/7 درصد کم برآوردی نتایج قابل قبولی در برآورد دما در منطقه مطالعاتی داشت. به‌­منظور بررسی روند تغییرات بارش و دما، از آزمون‌های ناپارامتری من­- کندال و شیب سنس بهره گرفته ­شد. نتایج نشان داد که روند تغییرات بارش در مقیاس سالانه، جز در قسمت‌­های مرکزی حوضه، به صورت افزایشی بوده است. این تغییرات در مقیاس فصلی بیشتر خود را نشان می‌­دهد، به نحوی که در فصل بهار روند تغییرات به صورت کاهشی و در فصل پاییز به صورت افزایشی بوده است. دما نیز بطور یکسان در کل منطقه مطالعاتی سیر صعودی را نشان می‌­دهد. باتوجه به نتایج تحقیق، ملاحظه شد که عوامل اقلیمی برای توجیه کاهش ورودی‌ها به سد ارس کافی نیستند و بررسی عوامل انسانی به همراه اثر ذوب برف نیز لازم به توجه هستند که در دستور کار ادامه این مطالعات است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial and Temporal Variation of Temperature and Precipitation Trends of Aras Transboundary River Basin

نویسندگان [English]

  • Mehrab Nouri 1
  • Saeid Morid 2
  • Nematollah Karimi 3
  • Hoshang Gholami 4
1 M.Sc. Graduate Student of Water Resources Engineering, College of Agriculture, Tarbiat Modares University, Tehran, Iran.
2 Professor, Department of Water Resources Engineering and Management, College of Agriculture, Tarbiat Modares University, Tehran, Iran.
3 Assistant Professor, Research Institute for Water Resources Studies and Research, Water Research Institute, Tehran, Iran.
4 M.Sc., Civil–Water Engineering, Head of Department of North Western Border Rivers and Shared Water Resources, Office of Border Water Resources and Shared Water Resources, Ministry of Energy, Tehran, Iran.
چکیده [English]

The Aras transboundary river has experienced a significant decreasing trend in inflow to the Aras Dam in recent years. In order to find out the cause, trend of changes in meteorological variables was evaluated. Working on a cross-border study area and lack of access to observational data, forced the use of TRMM3B43V7 and PERSIANN_CDR satellite products and CRU climate database as alternative data sources. Evaluation of precipitation products based on statistical criteria showed that the TRMM3B43V7 with R of 0.87 and 0.74 and RMSE of 65.64 and 84.56 mm and also, the BIAS values of 6.75% and 18.6%, respectively at the Kars and Mako stations had the best performance. Also, CRU climate database with high R and low RMSE and only 3.7% low estimate had acceptable results in temperature estimation in the study area. In order to investigate the trend of precipitation and temperature changes, non-parametric Mann-Kendall and Sense slope tests were used. The results showed that the trend of changes in precipitation on annual scale, except in the central parts of the basin, has been increasing. This change is more on seasonal scale, so that in the spring there was a downward trend and in the fall a reinforcer. Temperature also shows an uniform upward trend throughout the study area. According to the research, it is shown that climatic factors are not sufficient to justify the reduction of the inflow to the Aras Dam and the evaluation of human factors along with the effect of snowmelt is also necessary which is on the agenda of continuation to this study.

کلیدواژه‌ها [English]

  • Aras Transboundary Basin
  • Precipitation And Temperature Trend
  • CRU
  • PERSIANN_CDR
  • TRMM
Aghdasi F (2003) Study of geostatistical methods for mapping of precipitation in the daily and annual time scales (Case study: Borkhar plain). M.Sc. Thesis of Tehran university, 112p. (In Persian)
Ahmed K, Shahid S, Ismail T, Nawaz N, and Wang X J (2018) Absolute homogeneity assessment of precipitation time series in an arid region of Pakistan. Atmósfera 31(3):301-316
Aksornsingchai P, Srinilta C (2011) Statistical downscaling for rainfall and temperature prediction in Thailand. Paper Presented at the Proceedings of the International Multiconference of Engineers and Computer Scientists 1:356-361
Alexakis DD, Tsanis IK (2016) Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODIS data. Journal of Enviromental Earth Sciences 75(14):1077
Alijanian M, Rakhshandehroo G R, Mishra A K and Dehghani M (2017) Evaluation of satellite rainfall climatology using CMORPH, PERSIANN‐CDR, PERSIANN, TRMM, MSWEP over Iran. Royal Meteorogycal Society 37(14):4896-4914
Ashouri H, Hsu K L, Sorooshian S, Braithwaite D K, Knapp K R, Cecil L D, Nelson B R, and Prat O P (2015) PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bulletin of the American Meteorological Society 96(1):69-83
Atkinson P M (2013) Downscaling in remote sensing. International Journal of Applied Earth Observation and Geoinformation 22:106-114
Belda M, Holtanová E, Halenka T, and  Kalvová J (2014) Climate classification revisited: From Köppen to Trewartha. Climate Research 59(1):1-13
Bilalova S (2019) Assessment of the Impacts of Climate Change on the Hydrology of the Kura River Basin. M.Sc. Thesis in Environmental Sciences and Policy, Leuphana University Lüneburg  
Davis J C and Sampson R J (1986) Statistics and data analysis in geology. New York, Wiley: 646.
Dinku T, Ceccato P, Grover‐Kopec E, Lemma M, Connor S and Ropelewski C.F (2007) Validation of satellite rainfall products over East Africa's complex topography. International Journal of Remote Sensing 28(7):1503-1526
Duan Z, Bastiaanssen W G M (2013)  First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling- calibration procedure. Remote Sensing of Environment 131:1-13
Ebert E E, Janowiak J E, and Kidd C (2007) Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bulletin of the American Meteorological Society 88(1):47-64
Farrokhnia A, Morid S (2014) Assessment of the effects of temperature and precipitation variations on the trend of river flows in Urmia Lake watershed. Journal of Water and Wastewater 25(3):86-97 (In Persian)
Fathian F, Morid S (2012) Investigation of meteorological and hydrological variables trends in Urmia Lake basin using nonparametric methods. Iranian Journal of Soil and Water Research 43(3):259-269 (In Persian)
Gebremicael T G, Mohamed Y A, Zaag P v d, Gebremedhin A, Gebremeskel G, Yazew E, and Kifle M (2019) Evaluation of multiple satellite rainfall products over the rugged topography of the Tekeze-Atbara basin in Ethiopia. International Journal of Remote Sensing 40(11):4326-4345
Guo D, Li D, and Hua W (2018) Quantifying air temperature evolution in the permafrost region from 1901 to 2014. International Journal of Climatology 38(1):66-76
Harris I, Jones P D, Osborn T J, and Lister D H (2014) Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. International Journal of Climatology 34(3):623-642
Huffman G J, Bolvin D T, Nelkin E J, Wolff D B, Adler R.F, Gu G, Hong Y, Bowman K P, and Stocker E F (2007) The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology 8(1):38-55
Hunink J, Immerzeel W, and Droogers P (2014) A High-resolution Precipitation 2-step mapping Procedure (HiP2P): Development and application to a tropical mountainous area. Remote Sensing of Environment 140:179-188
Immerzeel W, Rutten M, and Droogers P (2009) Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sensing of Environment 113(2):362-370
Jia S, Zhu W, Lu A, and Yan T (2011) A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Journal of Remote Sensing of Environment 115(12):3069-3079
Katiraie-Boroujerdy P S, Asanjan A A, Hsu K L, and Sorooshian S (2017) Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales. Atmospheric Research 193:36-49
Kendall M G (1948) Rank correlation methods. Griffin, London
Li W, He X, Sun W, Scaioni M, Yao D, Fu J, Chen Y, Liu B, Gao J, and Li X.J (2019) Evaluating three satellite-based precipitation products of different spatial resolutions in Shanghai based on upscaling of rain gauge. International Journal of Remote Sensing 40(15):5875-5891
Longobardi A, Villani P (2010) Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. International Journal of Climatology 30(10):1538-1546
Ma Z, Shi Z, Zhou Y, Xu J, Yu W, and Yang Y (2017) A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai–Tibet Plateau with the effects of systematic anomalies removed. Remote Sensing of Environment 200:378-395
Mann H B (1945) Nonparametric tests against trend. Journal of the Econometric Society 13(3):245-259
McCaffrey S.C and Sinjela M (1998) The 1997 United Nations convention on international watercourses. American Journal of International Law 92(1):97-107
McCollum J R, Krajewski W F, Ferraro R R and Ba, M B (2002) Evaluation of biases of satellite rainfall estimation algorithms over the continental United States. Journal of Applied Meteorology and Climatology 41(11):1065-1080
Mitchell J, Dzerdzeevskii B, Flohn H, Hofmeyr W, Lamb H, Rao K, and Wallén C (1966) Climatic change. Technical Note, World Meteorological Organization: Geneva, Switzerland No. 79. 99
Nijssen B, Lettenmaier D P (2004) Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites. Journal of Geophysical Research: Atmospheres 109(D2)
Salman S.A, Shahid S, Ismail T, Al-Abadi A M, Wang X j and Chung E S (2019) Selection of gridded precipitation data for Iraq using compromise programming. Measurement 132:87-98
Sorooshian S, AghaKouchak A, Arkin P, Eylander J, Foufoula-Georgiou E, Harmon R, Hendrickx J M, Imam B, Kuligowski R, and Skahill B (2011) Advanced concepts on remote sensing of precipitation at multiple scales. Bulletin of the American Meteorological Society 92(10):1353-1357
Yue S, & Hashino M (2003) Long term trends of annual and monthly precipitation in Japan 1. JAWRA, Journal of the American Water Resources Association 39(3):587-596
Tan M, Ibrahim A, Duan Z, Cracknell A, and Chaplot V (2015) Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sensing 7(2):1504-1528
Tan M L, Santo H (2018) Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmospheric Research 202:63-76
UNDP (2013) Reducing transboundary degradation in the Kura Ara(k)s river basin International Water Learning Exchange and Resource Network, Report KAP/1375 (GEF)/2272 (UNDP)   
Villarini G, Krajewski W F, and Smith J A (2009) New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3‐hourly estimates over Oklahoma. Journal of Geophysical Research: Atmospheres 114(D12)
Zhang Q, Shi P, Singh V P, Fan K, and Huang J (2017) Spatial downscaling of TRMM‐based precipitation data using vegetative response in Xinjiang, China. International Journal of Climatology 37(10):3895-3909
Zhao H, Yang B, Yang S, Huang Y, Dong G, Bai J, and Wang Z (2018) Systematical estimation of GPM-based global satellite mapping of precipitation products over China. Atmospheric Research 201:206-217
Zhao Q, Xuan W, Liu L, Xu Y (2016) Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. International Journal of Climatology 30(17):3061-3083