ارزیابی میدانی عملکرد دستگاه خودکار تخمین غلظت رسوب معلّق رودخانه مبتنی بر الکترونیک نوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران.

2 استادیار گروه مهندسی برق و کامپیوتر، دانشکده فنی مهندسی گلپایگان، دانشگاه صنعتی اصفهان، گلپایگان، ایران.

3 کارشناس ارشد فوتونیک و دبیر آموزش پرورش شهرستان فریدن، ایران.

4 کارشناس ارشد علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران.

5 دانشجوی کارشناسی مهندسی برق، دانشگاه شهید بهشتی، تهران، ایران.

6 کارشناس نقشه‌کشی صنعتی و دبیر آموزش پرورش شهرستان خوانسار، ایران.

7 دانش‌آموخته دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران.

8 کارشناس آزمایشگاه شبیه‌ساز باران و فرسایش خاک، گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران.

9 کارشناس ارشد مهندسی مکانیک، گروه مهندسی مکانیک، دانشکده فنی مهندسی گلپایگان، دانشگاه صنعتی اصفهان، گلپایگان، اصفهان، ایران

10 دانش‌آموخته کارشناسی مهندسی برق، گروه مهندسی برق و کامپیوتر، دانشکده فنی مهندسی گلپایگان، دانشگاه صنعتی اصفهان، گلپایگان، ایران.

11 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران

چکیده

امروزه مباحث مربوط به فرسایش خاک به‌عنوان یکی از بحث‌های مهم در مدیریت آبخیز مطرح است. بر همین اساس درک فرآیند فرسایش خاک در سطح  آبخیزها مستلزم جمع‌آوری اطلاعات مناسب، دقیق و با فاصله زمانی مطلوب با استفاده از وسایل مناسب اندازه‌گیری است. حال با توجه به اهمیت برآورد رسوب معلق در کلیه مطالعات هیدرولوژی و هیدرولیک و طراحی‌های مبتنی بر آن‌ها، طی طرح حاضر مبادرت به ساخت یک دستگاه اولیه نمونه‌بردار و برآوردکننده غلظت رسوب معلق خودکار به‌عنوان یکی از ابزارهای مهم مطالعات رسوبات رودخانه‌ای شد، تا از این طریق زمینه‌های درک بیش‌تر فرآیندهای حاکم فرسایش خاک و تولید رسوب از طریق اندازه‌گیری لازم با دقت زمانی مناسب فراهم شود. در همین راستا و بر اساس تجربه‌های پیشین، اقدامات اجرایی لازم برای بهینه‌سازی بخش‌های مکانیکی و الکترونیک نوری مبتنی بر تعیین نوع و منبع نور، ‌آرایه و چیدمان بخش‌های مختلف انجام شد. آزمون میدانی دستگاه ساخته‌شده در چند رودخانه در شمال کشور نیز بر تطابق بالای داده‌های مشاهداتی و تخمینی رسوب معلق با ضریب هم‌بستگی بیش از 93/25 درصد در دامنه غلظتی موردبررسی دلالت دارد. پیش‌بینی می‌شود نمونه‌بردار طراحی‌شده،‌ تخمین‌های مناسب برای ارزیابی غلظت رسوب معلق در دامنه غالب در جریان‌های آبی با هزینه و نیروی قابل‌قبول و به‌ویژه در شرایط خاص، تمام ساعات شبانه‌روز و حتی مناطق دوردست را مهیا نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Field Assessment of Automatic Device Performance for Estimating the River Suspended Sediment Concentration based on Opto-Electronic Technology

نویسندگان [English]

  • Seyed Hamidreza Sadeghi 1
  • Vahideh Sadat SADEGHI 2
  • Seyed Vahid Sadeghi 3
  • Padideh Sadat Sadeghi 4
  • Seyed Parsa Sadeghi 5
  • Hamideh Sadat Sadeghi 6
  • Azadeh Katebikord 7
  • Negar Hassanzadeh 8
  • Dariush Jalili 9
  • Sepehr Yavari 10
  • Mostafa Zabihi Seilabi 11
1 Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran.
2 Assistant Professor, Electrical and Computer Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
3 M.Sc. graduate in Photonics, Teacher at Department of Eduacation, Fereidan, Iran.
4 M.Sc. graduate in Watershed Management Scinec and Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran.
5 B.Sc. Student, Electrical Engineering, Shahid Beheshti University, Tehran, Iran.
6 B.Sc. graduate in Industrial Drawing, Teacher at Department of Eduacation, Khansar, Iran.
7 Ph.D., Watershed Management Science and Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran.
8 Expert, Rainfall Simulation and Soil Erosion Laboratory, Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran.
9 Expert, Mechanical Engineerin Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Isfahan, Iran
10 B.Sc. graduate, Electrical and Computer Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
11 Ph.D. Student, Watershed Management Scinec and Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran.
چکیده [English]

Nowadays, issues related to soil erosion are one of the most critical issues and one of the major concerns in watershed management. Accordingly, knowledge on soil erosion process at watershed scale needs proper, suitable, accurate, and desirable temporal resolution data collection using appropriate device. An innovative device is designed and manufactured through this research for automatic sampling and measuring suspended sediment concentration. This aimed at a better understanding of the processes of soil erosion and sediment yield through better time-distributed measurements. The background of studies and research related to the project has been reviewed worldwide and based on previous experiences, manufacturing the mechanical part of the system was carried out and completed. Also, the necessary laboratory practices for designing, formulating, and simulating the electronic parts were performed. Numerous tests and attempts were made to optimize the mechanical and opto-electronic parts based on determining different arrangements and sources of light. The field test of the device in several rivers in the northern Iran indicated a high agreement of more than 93.25% between the observed and estimated suspended sediment concentrations. The designed sampler is expected to provide suitable estimates on concentration of suspended sediment in the dominant range in watercourses with acceptable, affordable cost and energy, particularly in special conditions such as floods, in the entire day and night hours, and even for remote areas.

کلیدواژه‌ها [English]

  • Hydrometry
  • Sediment Measurement
  • Sediment Load
  • Water-Based Monitoring Management
  • Water Sampler
Agrawal YC and Pottsmith HC )1994) Laser diffraction particle sizing in stress. Continental Shelf Research 14(10/11):1101-1121
Akhordzadeh H (2018) Direct measurement of bed load and determination of its ratio to suspended load in Kashkan river, Pol Dokhtar station. International Congress on Water, Soil and Environmental Sciences, Tehran, https://civilica.com/doc/827438 (In Persian)
Arabkhedri M (2001) Determining the ratio of bed to suspended through tank and sediment grain-size. Journal of Agricultural Engineering Research 2(6):81-91 (In Persian)
Asadi M and Fathzadeh A (2018) The use of computational intelligence base models in suspended sediment load estimation (Case study: Gillan province). Journal of Range and Watershed Management 71(1):45-60 (In Persian)
Barzegaribanadkoki F, Dastorani MT, Sharifi M, and Barzegari A (2017) Manufacturing and evaluation of the efficacy of a new turbidity meter. Iranian Journal of Watershed Management Science 11(38):73-82 (In Persian)
Bian S, Hu Z, and Lv J (2012) An observational study of the carrying capacity of suspended sediment during a storm event. Environmental Monitoring and Assessment 184(10):6037-6044
Black KP and Rosenberg MA (1994) Suspended sand measurements in a turbulent environment: Field comparison of optical and pump sampling techniques. Coastal Engineering 24(1-2):137-150
Chelotti GB, Martinez JM, Roig HL and Olivietti D (2019) Space-temporal analysis of suspended sediment in low concentration reservoir by remote sensing. Brazilian Journal of Water Resources 2(24)
Clifford NJ, Richards KS, Brown RA, and Lane SN (1995) Laboratory and field assessment of an infrared turbidity probe and its response to particle size and variation in suspended sediment concentration. Hydrological Sciences 40(6):771-791
Dastorani MT, Azimi Fashami Kh K, Talebi A, and Ekhtesasi MR (2012) Estimation of suspended sediment using artificial neural network (Case Study: JamishanWatershed in Kermanshah). Journal of Watershed Management Research 3(6):61-74 (In Persian)
Driggers RG (2003) Encyclopedia of optical engineering: Las-Pho. CRC Press 2:1025-2048
Eder A, Strauss P, Krueger T, and Quinton JN (2010) Comparative calculation of suspended sediment loads with respect to hysteresis effects (in the Petzenkirchen catchment, Austria). Journal of Hydrology 389(1-2):168-176
Gao P and Josefson M (2012) Temporal variations of suspended sediment transport in Oneida Creek watershed, central New York. Journal of Hydrology 426-427:17-27
Green MO and Boon JD (1993) The measurement of constituent concentrations in nonhomogeneous sediment suspensions using optical backscatter sensors. Marine Geology 110(1-2):73-81
Haimann M, Liedermann M, Petra LA, and Habersack H. (2014) An integrated suspended sediment transport monitoring and analysis concept. International Journal of Sediment Research 29(2):135-148
Hatefi M and Sadeghi SHR (2021) Perspective zoning of Iran provinces based on water stress, flood, drought and rainfall erosivity indices. Watershed Engineering and Management 13(1):213-221 (In Persian)
Kabolizadeh M, Rangzan K, and Mohammadi Sh (2022) Increasing the accuracy of monthly and annual estimates of soil loss in Iran by considering the effect of snow cover in reducing rainfall erosivity. Arabian Journal of Geosciences 15:1344
Kuhnle RA (2013) Suspended load. Treatise on Geomorphology 9:124-136
Lawler DM (2005) Spectrophotometry: Turbidimetry and nephelometry. In Encyclopedia of Analytical Science 343-351
Lobo R and Lopes LG (2020) Indirect estimation of flow and suspended-sediment concentration and load in small mountain streams: An exploratory study in Ribeira Seca Stream, Madeira Island. WSEAS Transactions on Environment and Development 16:869-879
Ludwig KA Hanes DM (1990) A laboratory evaluation of optical backscatterance suspended solids sensors exposed to sand-mud mixtures. Marine Geology 94:173-179
Merten GH, Capel PD, and Minella JP (2014) Effects of suspended sediment concentration and grain size on three optical turbidity sensors. Journal of Soils and Sediments 14(7):1235-1241
Mirchooli F, Sadeghi SHR, Khaledi Darvishan A, and Strobl J (2021) Multi-dimensional assessment of watershed condition using a newly developed barometer of sustainability. Science of the Total Environment 791:148389
Mohammadi SH, Karimzadeh HR, and Alizadeh M (2018) Spatial estimation of soil erosion in Iran using RUSLE model. Iranian Journal of Ecohydrology 5(2):551-569 (In Persian)
Navratil O, Esteves M, Legout C, Gratiot N, Nemery J, Willmore S, and Grangeon T (2011) Global uncertainty analysis of suspended sediment monitoring using turbidimeter in a small mountainous river catchment. Journal of Hydrology 398(3):246-259
Novo EM, Hansom JD, and Curran PJ (1989) The effect of viewing geometry and wavelength on the relationship between reflectance data and suspended sediment concentration. International Journal of Remote Sensing 10(8):1357-1372
Pavanelli D and Bigi A (2005a) A new indirect method to estimate suspended sediment concentration in a river monitoring programme. Biosystems Engineering 92(4):513-520
Pavanelli D and Bigi A (2005b) Indirect methods to estimate suspended sediment concentration: reliability and relationship of turbidity and settleable solids. Biosystem Engineering 90(1):75-83
Pomázi F and Baranya S (2020) Comparative assessment of fluvial suspended sediment concentration analysis methods. Water 12(3):873
Rastgar H and Habibi M (2010) An investigation on five methods of sediment discharge estimation ‎in Jagin River, Hormozgan province. Journal of Watershed Engineering and Management 3(1):12-20 (In Persian)
Rymszewicz A, Bruen M, O'Sullivan JJ, Turner JN, Lawler DM, Harrington JR, Conroy E, and Kelly-Quinn M (2018) Modelling spatial and temporal variations of annual suspended sediment yields from small agricultural catchments. Science of the Total Environment 619:672-684
Sadeghi SHR (2018) Superior innovator of “Design and manufacturing of 1st automatic suspended sediment sampler of Iran”. At Technology Development Council of Water, Drought, Erosion and Environment, Vice Presidency for Science and Technology of Iran, 2018 (In Persian)
Sadeghi SHR and Saeidi P (2009) Suspended sediment: A suitable estimator for soil organic matter loss. Journal of Water and Soil 23(1):221-228 (In Persian)
Sadeghi SHR and Singh VP (2017) Dynamics of suspended sediment concentration, flow discharge and sediment particle size interdependency to identify sediment source. Journal of Hydrology 554:100-110
Sadeghi SHR and Zakeri MA (2015) Partitioning and analyzing temporal variability of wash and bed material loads in a forest watershed in Iran. Journal of Earth System Science 124(7):1503-1515
Sadeghi SHR, Khaledi Darvishan V, Vafakhah M, Moradi RekabdarKolaei HR, Nasiri Khiavi A, Rajabi MR, Miar Naeimi S, Pournabi S, Ebrahimi Gatgesh Z, and Zaki SA (2021) Integrated and problem-based management of the watershed using strategic planning framework. Iranian Journal of Watershed Management Science 15(52):63-66 (In Persian)
Sadeghi SHR, Saeidi P, and Telvari AR (2018) Contribution of wash and channel sediment sources in supplying storm suspended sediment load in the Galazchai Watershed. Water Resources Engineering Journal 10(35):17-26 (In Persian)
Saeidi P and Sadeghi SHR (2010) Analysis of observed sedimentgraphs and rating loops on storm basis in educational watershed of Tarbiat Modares University, Iran. Journal of Water and Soil Conservation 17(1):97-112 (In Persian)
Saleh BE and Teich MC (2019) Fundamentals of photonics. John Wiley & Sons
Sedaei N and Soleimani K (2013) Comparison of two estimation formulae with the measured values and implication of path analyzing method in Armand River. Journal of Irrigation and Water Engineering 3(10):53-65 (In Persian)
Seeger M, Errea MP, Beguerıa S, Arnáez J, Martı C, and Garcıa-Ruiz JM (2004) Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees. Journal of Hydrology 288(3-4):299-311
Siadatmoosavi Sm, Habibi M, and Khoshkholgh A (2015) Device for measuring time series of suspended sediment concentration in water using light scattering return. The 17th Marine Industry Conference, Kish, https://civilica.com/doc/474551/ (In Persian)
USEPA (2000) The quality of our nation’s waters. A summary of the national water quality inventory. Report to Congress, Office of Water, 841-S-00-001, Washington, DC. 19 p
Woo HS, Julien PY, and Richardson EV (1986) Wash load and fine sediment load. Journal of Hydraulic Engineering 112(6):541-545
Zheng M (2018) A spatially invariant sediment rating curve and its temporal change following watershed management in the Chinese Loess Plateau. Science of the Total Environment 630:1453-1463