پایش تغییرات سطح دریای کاسپین متأثر از پارامترهای جوی با استفاده از تصاویر سنجش از دور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته رشته سنجش از دور و GIS، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران.

2 دانشیار و عضو هیئت علمی گروه سنجش از دور و GIS، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران.

3 دانش‌آموخته دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات دانشگاه آزاد، تهران، تهران، ایران.

چکیده

نوسانات تراز دریای کاسپین (CS) ناشی از فرآیندهای هیدرو-هواشناسی متقابل است که نه تنها در سطح کل حوضه آبخیز بلکه محدوده‌ای بسیار فراتر از آن را دربر می‌گیرد. بر اساس مطالعات صورت گرفته بین دوره زمانی 1929 تا 1977 تراز دریای کاسپین (CSL) حدود سه متر کاهش یافته است. منشأ تغییرات تراز CS و همچنین تغییرات آینده هنوز مورد بحث است. در این تحقیق، تغییرات بارش، رواناب و تبخیر در سطح کل حوضه آبخیز، دبی رودخانه‌ها، دمای سطح CS و تغییرات CSL بررسی شد. نتایج بدست آمده حاکی از دو تغییر اساسی در روند افزایش قابل توجه در ناهنجاری‌های SST است. این افزایش با شیب افزایشی 0/03 در سطح CS بیانگر افزایش دمای بیش از 1/5 درجه سانتی‌گراد در طول دوره مورد مطالعه است که می‌تواند پاسخی به افزایش دمای هوا و سطح زمین در مقیاس منطقه‌ای و جهانی باشد. همچنین کاهش دبی رودخانه‌ها طی دهه‌های اخیر چشمگیر بود. این تغییرات در رودخانه ولگا که بیش از %80 بیلان CS را تأمین می‌کند، بارزتر بود. بازسازی تغییرات طولانی مدت CSL با بیلان روزانه CS بین سال‌های 2020-1981 از طریق شارهای (P, E, R) نشان داد، میانگین CSL حدود 20cm/yr از 1995-1981 و افت 6cm/yr طی دوره زمانی 2020-1996 به خوبی توسط پیش بینی معادله بیلان آب قابل مشاهده است. همچنین، با توجه به پیک مشاهده شده چهار پارامتر P، R، E و SST روند افزایش SST و کاهش بارندگی (با شیب 1/8mm/yr-) با تغییرات CSL هماهنگ‌تر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Monitoring the Change in the Caspian Sea Level Affected by Atmospheric Parameters Using Remote Sensing Data

نویسندگان [English]

  • Morteza Sharif 1
  • Ataollah Kakroodi 2
  • Maedeh Sadat Hosseini 3
1 M.Sc. graduate, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran. Tehran, Iran
2 Associate Professor, Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran
3 M.Sc. graduate, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

The Caspian Sea level (CSL) fluctuations are driven by reciprocal hydro-meteorological processes which extend not only over the entire catchment area but also far beyond. According to the research literature, CSL has dropped approximately 3 m in the short-term period of 1929-1977. The origin of CSL changes and the future of these changes are still being debated. In this study, changes in precipitation, runoff, and evaporation in the catchment area, river discharge, sea surface temperature (SST), and also CSL change were investigated over 40-year. Study results revealed two major changes in the increasing trend of SST anomalies. With an increasing trend in the CS level with 0.03 slope, the results indicated an increase in SST by more than 1.5°C during the study period, which can be a response to the increase in air and land surface temperature on a regional and global scale. The decline in river discharge levels has also been significant in recent decades. These changes were more obvious in the volga river, which provides more than 80% of the CS balance. Reconstruction of long-term CSL change with daily water level data between 1981 and 2020 through fluxes also showed that the average sea level rise was about 20 cm/yr in the 1981-1995 period while a decrease of 6 cm/yr during the 1996-2020 period was clearly visible in the results of the water balance equation. Moreover, according to the observed peak values of the four parameters of precipitation, evaporation, runoff, and SST, the trend of increasing sea surface temperature and decreasing precipitation (with a slope of -1.8 mm/40yr) is more consistent with CSL change.

کلیدواژه‌ها [English]

  • SST
  • Runoff
  • Evaporation
  • Volga River
  • Climate Change
Abdolazim G, & Gholamreza R (2017) Identify different patterns of sea surface temperature using a cluster analysis. Journal of Wetlnd Ecobiology 9(2):53–70
Akbari M, Baubekova A, Roozbahani A, Gafurov A, Shiklomanov A, Rasouli K, Ivkina N, Kløve B, & Haghighi A T (2020) Vulnerability of the Caspian Sea shoreline to changes in hydrology and climate. Environmental Research Letters 15(11):115002
Arpe K, Bengtsson L, Golitsyn G S, Mokhov I I, Semenov V A, & Sporyshev P V (2000) Connection between Caspian sea level variability and ENSO.  Geophysical Research Letters 27(17):2693–2696
Arpe K, Leroy S A G, Lahijani H, & Khan V (2012) Impact of the European Russia drought in 2010 on the Caspian Sea level. Hydrology and Earth System Sciences 16(1):19–27
Arpe K (2011) Impact of the European Russia drought in 2010 on the Caspian Sea level. Hydrology and Earth System Sciences Discussions 8(4):7781–7803
Arpe K, Leroy S G A, Lahijani H, & Khan V (2011) Impact of the European Russia drought in 2010 on the Caspian Sea level. Hydrology and Earth System Sciences Discussions 8(4):7781–7803
Arpe Klaus, & Leroy S A G (2007) The Caspian Sea Level forced by the atmospheric circulation, as observed and modelled. Quaternary International 173–174:144–152
Bojinski S, Verstraete M, Peterson T C, Richter C, Simmons A, & Zemp M (2014) The concept of essential climate variables in support of climate research, applications, and policy. Bulletin of the American Meteorological Society 95(9):1431–1443
Brewin R, Smale D, Moore P, Dall’Olmo G, Miller P, Taylor B, Smyth T, Fishwick J, & Yang M (2018) Evaluating operational AVHRR sea surface temperature data at the coastline using benthic temperature loggers. Remote Sensing 10(6):925
Cao B, Gruber S, Zheng D, & Li X (2020) The ERA5-Land soil temperature bias in permafrost regions. The Cryosphere 14(8):2581–2595
Chen J L, Pekker T, Wilson C R, Tapley B D, Kostianoy A G, Cretaux J-F, & Safarov E S (2017) Long-term Caspian Sea level change. Geophysical Research Letters 44(13):6993–7001
Chen J L, Wilson C R, Tapley B D, Save H, & Cretaux J-F (2017) Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements. Journal of Geophysical Research: Solid Earth 122(3):2274–2290
Cook B I, Smerdon J E, Seager R, & Coats S (2014) Global warming and 21st century drying. Climate Dynamics 43(9):2607–2627
Crétaux J, & Birkett C (2006) Lake studies from satellite radar altimetry. Comptes Rendus Geoscience 338(14–15):1098–1112
Dai A, Zhao T, & Chen J (2018) Climate change and drought: A precipitation and evaporation perspective. Current Climate Change Reports 4(3):301–312
Dolukhanov P M, Chepalyga A L, & Lavrentiev N V (2010) The Khvalynian transgressions and early human settlement in the Caspian basin. Quaternary International 225(2):152–159
Fatehian S, Jelolchani-Niaraki M, Kakroodi AA, Dero QY, Samany NN. A (2018) volunteered geographic information system for managing environmental pollution of coastal zones: a case study in Nowshahr, Iran. Ocean Coastal Manag. 163:54–65.
Ferreira J G, Vale C, Soares C V, Salas F, Stacey P E, Bricker S B, Silva M C, & Marques J C (2007) Monitoring of coastal and transitional waters under the E.U. Water Framework Directive. Environmental Monitoring and Assessment 135(1–3):195–216
GCOS (2011) Systematic observation requirements from satellite-based data products for climate 2011 update. Supplemental Details to the Satellite-Based Component of the “Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC. Technical Report, No. 154, World Meteorological Organisation (WMO) Geneva
Georgievsky V Y, & Shiklomanov J A (1994) Impact of economic activity and global changes of climate on runoff in the Volga Basin. Study Report: Climate Variability and Change in the Commonwealth of Independent States (CIS): Forecasting Climate–Related Impacts and Societal Responces to Them. Ed. by IS Sonne, UNEP, 209–246
Ginzburg A I, Kostianoy A G, & Sheremet N A (2008) Sea surface temperature variability BT-The Black Sea Environment Springer Berlin Heidelberg (A. G. Kostianoy & A. N. Kosarev (eds.); pp. 255–275)
Ibrayev R A, Özsoy E, Schrum C, & Sur H İ (2010) Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction. Ocean Science 6(1):311–329
Jeihouni M, Kakroodi A A, Hamzeh S, (2019) Monitoring shallow coastal environment using Landsat/altimetry data under rapid sea-level change. Estuarine, Coastal and Shelf Science 224:260-271
Ji E, Jee G, & Lee C (2016) Comparison of IRI-2012 with JASON-1 TEC and incoherent scatter radar observations during the 2008–2009 solar minimum period. Journal of Atmospheric and Solar-Terrestrial Physics 146:81–88
Kakroodi A A, (2012) Rapid Caspian Sea-level Change and Its Impact on Iranian Coasts. PhD thesis. Delft University of Technology.
Kakroodi A A, Kroonenberg S B, Beni A N, & Noehgar A (2014) Short- and long-term development of the Miankaleh Spit, Southeast Caspian Sea, Iran. Journal of Coastal Research 298:1236–1242
Kakroodi AA, Kroonenberg SB, Goorabi A, Yamani M, (2014b). Shoreline response to rapid 20th century sea-level change along the Iranian Caspian coast. J. Coast. Res. 30 (6), 1243–1250.
Kakroodi A A, Kroonenberg S B, Hoogendoorn R M, Mohammd Khani H, Yamani M, Ghassemi M R, & Lahijani H A K (2012) Rapid Holocene sea-level changes along the Iranian Caspian coast. Quaternary International 263:93–103
Kakroodi A A, Leroy S A G, Kroonenberg S B, Lahijani H A K, Alimohammadian H, Boomer   I, Goorabi A, (2015) Late Pleistocene and Holocene sea-level change and coastal palaeoenvironment evolution along the Iranian Caspian shore. Marine Geology. 361: 111-125.
Kazancı N, Gulbabazadeh T, Leroy S A, & Ileri Ö (2004) Sedimentary and environmental characteristics of the Gilan–Mazenderan plain, northern Iran: Influence of long- and short-term Caspian water level fluctuations on geomorphology. Journal of Marine Systems 46(1–4):145–168
Kroonenberg S B, Rusakov G V, & Svitoch A A (1997) The wandering of the Volga delta: A response to rapid Caspian sea-level change. Sedimentary Geology 107(3–4):189–209
Lebedev S A & Kostianoy A G (2005) Satellite altimetry of the Caspian Sea. Sea, Moscow, 119838, Russia, 366
Lebedev Sergey A (2012a) Flood wave propagation model for the Caspian Sea based on satellite altimetry data. International Water Technology Journal 2(1):97020
Lebedev Sergey A (2012b) Mean sea surface model of the Caspian Sea based on TOPEX/Poseidon and Jason-1 Satellite Altimetry Data (S. Kenyon, M. C. Pacino, & U. Marti (eds.); Springer Berlin Heidelberg pp. 833–841)
Lebedev Sergey A, & Kostianoy A G (2005) Satellite altimetry of the Caspian Sea. Sea, Moscow 119838 Russia 366
López García M J (2020) SST comparison of AVHRR and MODIS time series in the western Mediterranean Sea. Remote Sensing 12(14):2241
Mamedov A V (1997) The late Pleistocene-Holocene history of the Caspian Sea. Quaternary International 41(42):161–166
Minnett P J, Alvera-Azcárate A, Chin T M, Corlett G K, Gentemann C L, Karagali I, Li X, Marsouin A, Marullo S, Maturi E, Santoleri R, Saux Picart S, Steele M, & Vazquez-Cuervo J (2019) Half a century of satellite remote sensing of sea-surface temperature. Remote Sensing of Environment 233:111366
Molavi Arabshahi M, Arpe K, & Leroy S A G (2016) Precipitation and temperature of the southwest Caspian Sea region during the last 55 years: Their trends and teleconnections with large‐scale atmospheric phenomena. International Journal of Climatology 36(5):2156–2172
Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, Choulga M, Harrigan S, Hersbach H, Martens B, Miralles D G, Piles M, Rodríguez-Fernández N J, Zsoter E, Buontempo C, & Thépaut J N (2021) ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data 13(9):4349–4383
Muñoz Sabater J (2019) ERA5-Land monthly averaged data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS)
Naderi Beni A, Lahijani H, Harami R M, Arpe K, Leroy S A G, Marriner N, Berberian M, Andrieu-Ponel V, Djamali M, Mahboubi A, & Reimer P J (2013) Caspian sea-level changes during the last millennium: Historical and geological evidence from the south Caspian Sea. Climate of the Past 9(4):1645–1665
Nandini-weiss S D, Prange M, Arpe K, Merkel U, & Schulz M (2020) Past and future impact of the winter North Atlantic Oscillation in the Caspian Sea catchment area. International Journal of Climatology 40(5):2717–2731
Ozyavas A, Khan S D, & Casey J F (2010) A possible connection of Caspian Sea level fluctuations with meteorological factors and seismicity. Earth and Planetary Science Letters 299(1–2):150–158
Prange M, Wilke T, & Wesselingh F P (2020) The other side of sea level change‎. Communications Earth & Environment 1(69):18–21
Roshan G, Moghbel M, & Grab S (2012) Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations. Iranian Journal of Environmental Health Science & Engineering 9(1):24
Rousta I, Sharif M, Heidari S, Kiani A, Olafsson H, Krzyszczak J, & Baranowski P (2023) Climatic variables impact on inland lakes water levels and area fluctuations in an arid/semi-arid region of Iran, Iraq, and Turkey based on the remote sensing data. Earth Science Informatics 16(2):1611-1635
Saxe S, Farmer W, Driscoll J, & Hogue T S (2021) Implications of model selection: a comparison of publicly available, conterminous US-extent hydrologic component estimates. Hydrological Earth System Science 25(3):1529–1568
Sharif M, & Attarchi S (2022) Investigating long-term trends of sea level anomalies in the Persian Gulf and the parameters affecting it using multi-source data. Iran-Water Resources Research 18(3):157–179
Shirvani A (2017) Change point detection of the Persian Gulf sea surface temperature. Theoretical and Applied Climatology 127(1–2):123–127
Shirvani Amin (2017) Change in annual precipitation in the northwest of Iran. Meteorological Applications 24(2):211–218
Shirvani A, Arpe K, & Jahandideh M (2020) Analysis of trends and change points in meteorological variables over the south of the Caspian Sea. Theoretical and Applied Climatology 141:959–966
Toorani M, Kakroodi A A, Yamani M, Beni A N (2021)  Monitoring shoreline shift under rapid sea-level change on the Caspian Sea observed over 60 years of satellite and aerial photo records, J. Great Lakes Res. Vol. 47, no. 3, pp. 812-828.
Wang W, Lee X, Xiao W, Liu S, Schultz N, Wang Y, Zhang M, & Zhao L (2018) Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nature Geoscience 11(6):410–414