تحلیل فصلی بودن سیلابهای حدی در حوضه دریاچه ارومیه با استفاده از آمار دایره ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی آب، دانشگاه تبریز، تبریز، ایران.

2 استاد، گروه مهندسی آب، دانشگاه تبریز، تبریز، ایران.

چکیده

از پیامدهای مهم تغییرات اقلیمی روی سیلاب‌­های حدی تغییر در فراوانی، زمان ظهور آن­ها و مقدار آن­ها است. در این پژوهش، تحلیل فصلی سیلاب‌های حدی حوضه دریاچه ارومیه با بکارگیری داده‌­های 14 ایستگاه هیدرومتری انجام شده است. این کار با استفاده از روش نوین آمار دایره­ای در دوره آماری 2019-2003 انجام شد. یکنواختی زمان وقوع رویدادهای حدی با دو روش ریلیه و کایپر در سه سطح معنی‎داری 0/1، 0/05 و 0/01 مورد آزمون قرار گرفت. از روش تخمین­گر شیب سن اصلاح شده برای تخمین شیب خط روند زمان وقوع رویدادهای حدی استفاده شد. نتایج آزمون کایپر حاکی از عدم وجود یکنواختی در زمان وقوع رخدادهای حدی سیلاب بود. معلوم شد که در منطقه، دو فصل سیلابی متمایز شامل الف) اواخر اسفند تا اواسط اردیبهشت ­(S1)­ و ب) اواسط شهریور تا اوایل آذر (S2) وجود دارد. میانه شاخص قدرت فصلی رویدادها برابر با 0/695=r بود. پس از تفکیک سال به دو فصل مورد اشاره، این رقم برای فصل اول 0/9 و برای فصل دوم 0/78 بدست آمد. قدرت فصلی S1 در دو بخش غربی و شرقی دریاچه ارومیه مشابه بود، ولی در فصل S2 بخش غربی دریاچه ارومیه قدرت فصلی بیشتری نسبت به بخش شرقی آن داشت. بطور میانگین، روند تغییرات زمان وقوع رخدادها در فصلS1 در %40 ایستگاه­ها منفی بود و %60 بقیه روند مثبت داشتند. این رقم برای فصل S2 بترتیب %11 برای روند نزولی و %78 برای روند صعودی حاصل شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seasonality Analysis of Extreme Flood in Urmia Lake Basin Using Circular Statistics

نویسندگان [English]

  • Rogaieh Samadi 1
  • Yagob Dinpashoh 2
  • Ahmad Fakherifard 2
1 Ph.D. student, Water Engineering Department, University of Tabriz, Tabriz, Iran.
2 Professor, Water Engineering Department, University of Tabriz, Tabriz, Iran.
چکیده [English]

One of the important consequences of the climate change on extreme floods is the change in their frequency, timing and magnitude. In this research, the seasonality of flood in the Urmia Lake basin was analyzed based on the extreme flood data from 14 stations. This work was done in the statistical period of 2003-2019 using the new method of circular statistics. The uniformity of occurrence time of extreme floods (OTEF) was examined by Rayleigh-test and Kuiper-test, in three significance levels of 0.1, 0.05 and 0.01. The slope of the trend lines for the OTEF were estimated using the modified Sen’s estimator. The results of the Kuiper test indicated that there is no uniformity in the OTEF. It was found that there are two distinct flood seasons in the region including a) late March to mid-May (S1) and b) mid-September to early December (S2). The mean of seasonal strength index of events was equal to r̅=0.695. By dividing the year into above mentioned seasons, this index was obtained as 0.9 for the first season and 0.78 for the second season. The two eastern and western parts of the Urmia Lake had same seasonality strength in S1. However, in S2 the seasonality of the western part of the lake was stronger than the eastern part. In S1, on average, the OTEF in 40% of the stations had a negative trend while for the rest it showed a positive trend. For S2 the stations with negative and positive trends were respectively 11% and 78% of the total.
 

کلیدواژه‌ها [English]

  • Seasonal Strength
  • Directional Statistics
  • Modified Sen Estimator Slope
  • Rayleigh
  • Kuiper
Ali G, Tetzlaff D, Kruitbos L, Soulsby C, Carey S, McDonnell J, et al. (2013) Analysis of hydrological seasonality across northern catchments using monthly precipitation–runoff polygon metrics. Hydrological Sciences Journal 59(1):56-72
Alifujiang Y, Abuduwaili J, & Ge Y (2021) Trend analysis of annual and seasonal river runoff by using innovative trend analysis with significant test. Water 13(1):95
Anonymous (2019) Final report of crisis management. National Report of Floods
Bayliss AC, Jones RC (1993) Peaks-over-threshold flood database: Summary statistics and seasonality. Institute of Hydrology, Wallingford, UK, IH Report No. 121, pp 61
Bezak N, Brilly M, Šraj M (2014) Comparison between the peaks-over-threshold method and the annual maximum method for flood analysis. Hydrological Sciences Journal 59(5):959-977
Black A R, & Werritty A (1997) Seasonality of flooding: A case study of North Britain. Journal of Hydrology195(1-4):1-25
Blöschl G et al. (2017) Changing climate shifts timing of European floods. Science 357(6351):588
Bostan AP, Akyürek Z (2007) Exploring the mean annual precipitation and temperature values over Turkey by using environmental variables. ISPRS: Visualization and Exploration of Geospatial Data, Stuttgart
Bozorg Haddad O, Dehghan P, Zolghadr Asli B, Singh VP, Xuefeng Chu, Hugo A (2022) Loáiciga system dynamics modeling of lake water management under climate change. Nature Scientific Reports: 1-17, https://doi.org/10.1038/s41598-022-09212-x
Bozorg-Haddad O, Dehghan P, Zareie S, Loaiciga H A (2020) System dynamics applied to water management in lakes. John Wiley & Sons 69(4):956–966
Burn D (1997) Catchment similarity for regional flood frequency analysis using seasonality measures. Journal of Hydrology 202(2):12–230
Burn DH, Whitfield PH (2018) Changes in flood events inferred from centennial length streamflow data records. Advances in Water Resources 121:333–349
Cunderlik JM, Ouarda TBMJ (2009) Trends in the timing and magnitude of floods in Canada. Journal of Hydrology 375: 471–480
Davangah E, Soltani S, Sarhadi A (2012) Investigating the trend of extreme flow values (minimum flow and flood) in the Sefid Rood watershed. Journal of Agricultural Sciences and Techniques and Natural Resources, Water and Soil Sciences 58:215- 229 (In Persian) 
Delavar M, Morid S, Shafieieefar M, Moghaddamnia A, Cluckie I D (2007) Simulation and analyses of uncertainty and sensitivity of the changes of the Urmia Lake Level to water budget components using ANNs and ANFIS. Geophysical Research Abstracts 9:05507
Dhakal N, Jain1 S, Gray A, Dandy M, Stancioff1 E (2015) Nonstationarity in seasonality of extreme precipitation: A nonparametric circular statistical approach and its application. Water Resources Research 51:4499–4515
Do H, Westra S, Leonard M, Gudmundsson L, Seneviratne S (2018) Global-scale prediction of flood timing using atmospheric reanalysis and the Global Streamflow Indices and Metadata (GSIM) archive. Geophysical Research Abstracts 20:1-19
Eimanifar A, Mohebbi F (2007) Urmia Lake (northwest Iran): A brief review. Aquatic Biosystems 3(5):1–8
Esfandiari Darabad F, Mostafazadeh R, Shahmoradi R, Nasiri Khiavi A (2020) The effect of dam construction on flood flow changes and water shortage indicators in the south of Lake Urmia. Journal of Natural Environment Hazards 24:1-14 (In Persian) 
Ghezel saflo M, Dinpashoh Y, Gorbani MA, Fakheri Fard A (2012) Trend Analysis of streamflows in east Azarbayjan province. Journal of Irrigation Sciences and Engineering 35(1):71-82
Golabian H (2011) Urmia Lake: hydro-ecological stabilization and permanence macro-engineering seawater in unique environments. Springer-Verlag, Berlin, pp 365–397
Gu X, Zhang Q, Singh VijayP, Shi P (2017) Nonstationarity in timing of extreme precipitation across China and impact of tropical cyclones. Global and Planetary Change 149:153–165
Hassanzadeh E, Zarghami M, Hasssanzadeh Y (2012) Determining the main factors in declining the Urmia lake level by using system dynamics modeling. Water Resources Management 26(2):129–145
Hodgkins G A, Whitfield P H, Burn D H, Hannaford J, Renard B, Stahl K, Fleig, Madsen, A K H, Mediero L, Korhonen J, Murphy C W D (2017) Climate-driven variability in the occurrence of major floods across North America and Europe. Journal of Hydrology 552:704–717
Hsu YJ, Fu Y, Bürgmann R, Hsu SY, Lin CC, Tang CH, & Wu YM (2020) Assessing seasonal and interannual water storage variations in Taiwan using geodetic and hydrological data. Earth and Planetary Science Letters 550:116532
Jeneiová K, Kohnová S, Hall J, Parajka J (2016) Variability of seasonal floods in the Upper Danube River basin. Journal of Hydrology and Hydromechanics 64(4):357–366
Koutroulis AG, Tsanis IK, Daliakopoulos IN (2010) Seasonality of floods and their hydrometeorologic characteristics in the island of Crete. Journal of Hydrology 394:90-100
Lang M, Ouarda TBMJ, Bobee B (1999) Towards operational guidelines for over-threshold modeling. Journal of Hydrology 225(3–4):103–117
Mardia KV (1999) Statistics of directional data. Academic Press, New York, NY
Mardia KV, Jupp PE (1999) Statistics of directional data. Wiley Press, pp 429
Maria M, Gaudry C, Gutknecht D, Parajka J, Rui AP, Blöschl G (2017) Seasonality of runoff and precipitation regimes along transects in Peru and Austria. Journal of Hydrology, Hydromech 65(4):347–358
Modarres R, Sarhadi A, Burn DH (2016) Changes of extreme drought and flood events in Iran. Global and Planetary Change 144:67–81
Mirabassi R, Dinpazhooh Y (2012) Trend analysis of precipitation of NW Iran Over the past half of the centry. Journal of Irrigation Sciences and Engineering 35(4):59-73
Noury M, Sedghi H, Babazadeh H, Fahmi H (2014) Urmia Lake water level fluctuation hydro informatics modeling using support vector machine and conjunction of wavelet and neural network. Water Resources 41(3):261–269
Ouarda TB, Cunderlik JM, St-Hilaire A, Barbet M, Bruneau P, & Bobée B (2006) Data-based comparison of seasonality-based regional flood frequency methods. Journal of Hydrology 330(1-2):329-339
Parajka J S, Kohnová G, Bálint M, Barbuc M, Borga P, Claps S, Cheval A, Dumitrescu E, Gaume K, Hlavčová R, Merz M, Pfaundler G, Stancalie J, Blöschl G (2010) Seasonal characteristics of flood regimes across the Alpine-Carpathian range. Journal of Hydrology 394(1-2):78-89
Radmanesh F, Esmaeili-Gisavandani H, Lotfirad M (2022) Climate change impacts on the shrinkage of Lake Urmia. Journal of Water and Climate Change 13(6):2255–2277
Salehi Bavil S, Zeinalzadeh K, Hessari B (2018) The changes in the frequency of daily precipitation in Urmia Lake basin, Iran. Theoretical and Applied Climatology133:205–214
Sakizadeh M, Milewski A, Sattari M T (2023) Analysis of long-term trend of stream flow and interaction effect of land use and land cover on water yield by SWAT Model and statistical learning in part of Urmia Lake Basin, Northwest of Iran. Water 15(4):690
Sathish S, & Babu SK (2017) Stochastic time series analysis of hydrology data for water resources. In IOP Conference Series: Materials Science and Engineering 263(4):042140, IOP Publishing
Schulz S, Darehshouri S, Hassanzadeh E, Tajrishy M, Schüth C (2020) Climate change or irrigated agriculture- What drives the water level decline of Lake Urmia. Scientific Reports 10(1):1–10
Shirzad R, Hesari B (2017) Investigation of the statistical trend of instant floods in the rivers of Urmia Lake basin. The First International Climate Change Conference, Iran, 1-15 (In Persian)
Villarini G (2016) On the seasonality of flooding across the continental United States. Advances in Water Resources 87:80–91
Zhang Q, Gu X, Singh VP, Shi P, Luo M (2017) Timing of floods in southeastern China: Seasonal properties and potential causes. Journal of Hydrology 552:732–744
Zohrabi N, Sedghi H, Massah Bavani AR, Telvari AR, Abdoveis S (2011) Determining the temporal trend in annual maximum flood series in the Large Karoun river (Iran). 2nd International Conference on Environmental Science and Technology, IPCBEE vol.6, IACSIT Press, Singapore