ارزیابی و بهبود الگوریتم تشخیص پوشش سطح برف از تصاویر سنجنده MODIS

نوع مقاله : مقاله پژوهشی


1 دانش‌آموخته کارشناسی ارشد /مدیریت منابع آب. دانشکده مهندسی عمران.دانشگاه صنعتی خواجه نصیرالدین طوسی

2 استادیار /گروه مدیریت منابع آب.دانشکده مهندسی عمران.دانشگاه صنعتی خواجه نصیرالدین


اطلاعات از پوشش برف به عنوان یکی از منابع تامین آب‌های زیرزمینی، شرب و کشاورزی برای مدیریت بهینه منابع آبی اهمیت بسزایی دارد. از جمله منابع اطلاعاتی مهم برای شناسایی سطح برف، تصاویر ماهواره‌ای سنجنده MODIS است که محصول سطح برف به صورت منظم از آن‌ها تولید می‌گردد. هدف این پژوهش ارتقاء دقت الگوریتم شناسایی سطح برف از تصاویر MODIS با بهره‌گیری از تصحیح توپوگرافی و آستانه‌گذاری دمای سطحی است. در این راستا، شمال‌غرب کشور به عنوان محدوده پایلوت انتخاب و به دلیل عدم جمع‌آوری داده‌های سطح برف، تصاویر Landsat 8 بعنوان داده واقعیت زمینی برگزیده شد. 5 تصویر تقریباً همزمان MODIS و Landsat 8 مناسب در سال‌های 2014 تا 2015 تهیه و از هر تصویر MODIS تعداد 5 نمونه 10000 پیکسلی انتخاب و سه الگوریتم پیاده‌سازی گردید. الگوریتم اول با روش محصول برف MODIS به متوسط قدر مطلق خطاهای نسبی 3.44 درصد رسید. در الگوریتم دوم تصحیح توپوگرافی موجب بهبود این مقدار به 2.25 گردید. الگوریتم سوم مؤید تاثیر اعمال حد آستانه دمای سطح زمین بود که با برگزیدن آستانه k 278، متوسط قدر مطلق خطاهای نسبی 2.58 گردید. بنابراین نتایج نشان دهنده کارایی الگوریتم‌های ارائه شده در این تحقیق نسبت به روش استاندارد در مناطق مورد مطالعه بود.



عنوان مقاله [English]

Evaluation and improvement of snow cover detection from MODIS images

نویسندگان [English]

  • M. Tasdighian 1
  • M. Rahimzadegan 2
1 K. N. Toosi University of Technology
2 Assistant Professor, Water Resources Department, Civil Engineering Faculty, K. N. Toosi University of Technology, No. 1346, Vali Asr Street, Mirdamad Intersection, Tehran, Iran
چکیده [English]

Information from snow cover as one of the major resources of the groundwater, drinking and agriculture water has a significant importance in water resources management. One of the important sources of data for snow cover detection are the MODIS satellite images, which snow products were produced using them routinely. This research aims to improve the snow cover detection algorithm of MODIS using topography correction and Land Surface Temperature thresholding. In this regard, Northwestern part of Iran was selected as a pilot area, and because of the lack of field snow area data, Landsat 8 images were chosen as ground truth. Five appropriate simultaneous MODIS and Landsat 8 images in 2014 and 2015 years were prepared and 5 samples with 10000 pixels in each MODIS image were selected and three algorithms were implemented. The first one with MODIS snow product method was achieved to the mean absolute relative error of 3.44 percent. In the second algorithm topographic correction was implemented which the error was 2.25 percent. The third algorithm investigated land surface temperature thresholding effect, which in the best value of LST with considering 278 K threshold yielded to mean absolute relative error of 2.58 percent. Hence, results indicate proficiency of the provided algorithms in the study area, comparing with the standard method.

کلیدواژه‌ها [English]

  • MODIS images
  • Landsat 8 images
  • Snow cover area
  • Land surface Temperature
  • topographic correction
Ahmadi A, Khoramian A, Safavi HR (2015) Assessment of climate change impacts on snow-runoff processes a case study: Zayandehroud river basin. Iran-Water Resources Research 11 (2):70-82 (In Persian)
Armstrong R, Hardman M (1991) Monitoring global snow cover. IEEE, Piscataway, NJ,(USA) 4:1947-1949
Berezowski T, Chormański J, Batelaan O (2015) Skill of remote sensing snow products for distributed runoff prediction. Journal of Hydrology 524:718-732
Bunting JT, d'Entremont RP (1982) Improved cloud detection utilizing Defense Meteorological Satellite Program near infrared measurements. DTIC Document
Choudhury B, Chang A (1981) The albedo of snow for partially cloudy skies. Boundary-Layer Meteorology 2(3):371-38
Dozier J (1989) Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sensing of Environment 28:9-22
Ghanbarpour MR, Saravi MM, Saghafian B, Ahmadi H, Abbaspour K (2005) An evaluation of regions effective in accumulation and persistence of snow cover and snowmelt contribution in runoff. Iranian Journal of Natural Resources 58 (3):503-515 (In Persian)
Hall D, Foster J, Verbyla D, Klein A, Benson C (1998a) Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in central Alaska. Remote Sensing of Environment 66(2):129-137
Hall D, Tait A, Riggs G, Salomonson V, Chien J, Klein A (1998b) Algorithm Theoretical Basis Document (ATBD) for the MODIS Snow-, Lake Ice-and Sea Ice-mapping Algorithms (ATBD MOD10). NASA Goddard Space Flight Center, Greenbelt, MD. Available online at http// modis gsfc nasa gov/MODIS/Data/ATBDs/atbd-mod10 pdf
Hall DK, Riggs GA, Salomonson VV (1995) Development of methods for mapping global snow cover using Moderate Resolution Imaging Spectroradiometer data. Remote Sensing of Environment 54(2):127-140
Hall DK, Riggs GA, Salomonson VV, DiGirolamo NE, Bayr KJ (2002) MODIS snow-cover products. Remote Sensing of Environment 83 (1):181-194
Kite G (1991) A watershed model using satellite data applied to a mountain basin in Canada. Journal of Hydrology 128(1):157-169
Klein AG, Hall DK, Riggs GA (1998) Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrological Processes 12(10‐11):1723-1744
Kyle H, Curran R, Barnes W, Escoe D (1978) A cloud physics radiometer. In: 3rd Conference on Atmospheric Radiation, 1978. pp 107-109
Matkan A (2003) Snow Depth Estimation in Iran, Using: DMSP F11-SSM/I Satellite Data. Geography-Sientific Journal of the IGA (1):8-27
Maurer EP, Rhoads JD, Dubayah RO, Lettenmaier DP (2003) Evaluation of the snow‐covered area data product from MODIS. Hydrological Processes 17(1):59-71
Mobasheri MR, Moghadam HS, Shayan S (2010) An introduction to MODISI and SCMOD methods for correction of the MODIS snow assessment algorithm. Journal of the Indian Society of Remote Sensing 38(4):674-685
Rees WG (2005) Remote sensing of snow and ice. CRC Press, 312p
Richter R, Kellenberger T, Kaufmann H (2009) Comparison of topographic correction methods. Remote Sensing 1(3):184-196
Rittger K, Painter TH, Dozier J (2013) Assessment of methods for mapping snow cover from MODIS. Advances in Water Resources 51:367-380
Salomonson V, Appel I (2004) Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sensing of Environment 89(3):351-360
Satir O (2016) Comparing the satellite image transformation techniques for detecting and monitoring the continuous snow cover and glacier in Cilo mountain chain Turkey. Ecological Indicators 69:261-268
Seidel K, Brüsch W, Steinmeier C (1994) Experiences from real time runoff forecasts by snow cover remote sensing. In: Geoscience and Remote Sensing Symposium, 1994. IGARSS'94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation., International, 1994. IEEE, pp 2090-2093
Shams M, Mobasheri MR, Fatemi SB (2014) Assessment the accuracy of NDSI index extracted from MODIS images in areas with intermediate slope. Iranian Journal of Remote Sencing & GIS 6(1):1-16 (In Persian)
Singer F, Popham R (1963) Non-meteorological observations from weather satellites. Astronautics and Aerospace Engineering 1(3):89-92
Singh P, Jain S (2003) Modelling of streamflow and its components for a large Himalayan basin with predominant snowmelt yields. Hydrological Sciences Journal 48(2):257-276
Tang B-H, Shrestha B, Li Z-L, Liu G, Ouyang H, Gurung DR, Giriraj A, San Aung K (2013) Determination of snow cover from MODIS data for the Tibetan Plateau region. International Journal of Applied Earth Observation and Geoinformation 21:356-365
Vikhamar D, Solberg R (2003) Subpixel mapping of snow cover in forests by optical remote sensing. Remote Sensing of Environment 84(1):69-82
Wang X, Xie H, Liang T (2008) Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China. Remote Sensing of Environment 112(4):1497-1513
Warren SG (1982) Optical properties of snow. Reviews of Geophysics 20(1):67-89
Wiscombe WJ, Warren SG (1980) A model for the spectral albedo of snow. I: Pure snow. Journal of the Atmospheric Sciences 37(12):2712-2733