مدل‌سازی و مدیریت کیفیت آب رودخانه با رویکرد کنترل آلودگی در مبدأ به منظور تأمین سلامت آبزیان (مطالعه موردی: زرینه‌رود)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته دوره کارشناسی ارشد/ مهندسی و مدیریت منابع آب، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس.

2 استادیار / گروه مهندسی آب، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس.

3 استادیار / گروه آب و محیط زیست، دانشکده مهندسی عمران، دانشگاه علم و صنعت.

چکیده

حفاظت و مدیریت کیفیت آب رودخانه‎ها به‌عنوان یکی از منابع طبیعی ارزشمند در شرایط تشدید بحران کمی منابع آب بیش از پیش حائز اهمیت است. در این تحقیق، ضمن شناسایی منابع آلاینده، سناریوهای متعدد کنترل آلودگی‌های رودخانه زرینه‌رود برای دستیابی به استاندارهای کیفیت آب برای حیات آبزیان مورد ارزیابی قرار گرفته است. به‌منظور دستیابی به اهداف تحقیق، سه دوره نمونه‌برداری پارامترهای کیفیت آب، پایش منابع آلاینده رودخانه و پایش وضعیت پوشش گیاهی بستر از نقاط مختلف رودخانه زرینه‌رود در فصول مختلف سال 1396 انجام گردید. با استفاده از داده‎های گردآوری شده، مدل هیدرولیک و کیفیت آب رودخانه در محیط QUAL2KW آماده‎سازی و سپس واسنجی و صحت‌سنجی گردید. ارزیابی رفتار هیدرولیک و کیفیت آب رودخانه زرینه‌رود متأثر از سناریوهای مختلف نشان می‌دهد که در طی فصول خشک، کنتیک واکنش و فرآیند انتقال هر دو بر تغییرات غلظت پارامترهای کیفیت آب اثرگذار هستند، در حالی که در فصل‌تر، فرآیند انتقال غالب و اثرگذار است. متعاقباً، تحلیل منابع آلاینده‌ نشان می‎دهند منابع گسترده مانند زباله‌ها و فضولات انباشته شده در ساحل رودخانه بیشترین سهم را در آلودگی آب (مواد مغذی) دارند و از بین منابع نقطه‌ای و آلاینده‌های کشاورزی، منابع نقطه‌ای سهم بیشتر آلایندگی را در فصل تابستان و پاییز و آلاینده‌های کشاورزی سهم بیشتر را در فصل بهار دارند. بررسی سناریوهای مختلف مدیریت کیفیت رودخانه در فصل پائیز نشان می‌دهند محدود نمودن BOD5 فاضلاب کارخانه قند به مقدار 210 میلی‌گرم بر لیتر در شرایط کنونی، سبب می‌گردد تا غلظت اکسیژن خواهی بیوشیمیایی رودخانه در حد استاندارد برای حیات آبزیان بماند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and management of the river water quality for aquatic life using a source control approach (case study:The Zarrineh River)

نویسندگان [English]

  • M.R Biglari 1
  • S. Sima 2
  • M. Saadatpour 3
1 M.Sc.Graduated student in Water Resources Engineering and Management, School of Civil & Environmental Engineering, University of Tarbiat Modares, Tehran, Iran
2 Assistant Professor, School of Civil & Environmental Engineering, University of Tarbiat Modares Tehran, Iran.
3 Assistant Professor, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
چکیده [English]

Protection and management of water quality of rivers, as one of the valuable natural resources, is of high importance, especially where the sacristy of water resources matter too. In the present study, in addition to identifying contamination resources, it was surveyed different sceneries of controlling the major pollutants of the Zarrineh River in order to meet the water quality standards for aquatic life. To achieve the research objectives water quality sampling, monitoring of the contamination resources and plant coverage, along the river were conducted during the three seasons in 2016. A river water quality and hydraulic model was implemented, calibrated and confirmed by using the data in QUAL2KW. Evaluation of the hydraulic behavior and river water quality indicate that during the dry seasons, both reaction and advection affect the variations in water quality parameters, whereas during the wet periods, advection dominants. Subsequently, analysis of the river water quality pollutants reveals that the distributed sources like pile of trashes and animal wastes at the river bank have the largest share in contamination (Nutrients) of the Zarrineh River and among the point source pollution and agricultural pollutants, the largest share in contamination during summer and fall seasons belongs to the point source and during the spring season belongs to agricultural pollutants. In the present condition, evaluation of water quality management sceneries during the fall season, shows that restricting Sugar Factory Sewage BOD5 to 210(mg/l) gives rise to keeping standard amount of BOD for the aquatic life.

کلیدواژه‌ها [English]

  • Water Quality
  • QUAL2Kw Model
  • Point and distributed source
  • Source control of pollutants
  • aquatic life
ANZECC (2000) Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand environment and conservation council and agriculture and resource management council of Australia and New Zealand, Canberra:1-103
Bhatnagar A, Devi P (2013) Water quality guidelines for the management of pond fish culture. International Journal of Environmental Sciences 3(6):1980-1990
Bhatnagar A, Jana S, Garg S, Patra B, Singh G, Barman U (2004) Water quality management in aquaculture. Course Manual of summer school on development of sustainable aquaculture technology in fresh and saline waters, CCS Haryana Agricultural, Hisar (India):203-210
Camargo R, Calijuri M, Santiago A, and Couto E (2010) Water quality prediction using the QUAL2Kw model in a small karstic watershed in Brazil. Acta Limnologica Brasiliensia 22(4):486-498
Chapra S (2008) Surface water-quality modeling. Waveland press, 835P          
Cox B (2003) A review of dissolved oxygen modelling techniques for lowland rivers. Science of the Total Environment 314:303-334
 EEC (1978) On the quality of fresh waters needing protection or improvement in order to support fish life. Official Journal
EPA (2003) Aquaculture management and the Environment Protection (Water Quality) Policy. Official Journal
Faraspandab Consulting Engineers (2009) Project for upgrading the water balance of the study area of Lake Urmia watershed, water balance report. West Azarbaijan Regional Water Authority, Office of Basic Water Resources Studies (In Persian)
Hashemi B (2009) Pollution measurement and modeling of water quality in Shapur, Dalaki and Hilla rivers. M.Sc.Thesis, School of Civil & Environmental Engineering, University of Shiraz (In Persian)
Hashemi H, Ghasemi Zeyarani E, Ranjkesh Y (2010) Partitioning the load from the sub-basins into the AmirKabir Dam reservoir using the Qual2k model. Journal of Environmental Studies 37(59):1-8 (In Persian)
Hemond H, Fechner E (2014) Chemical fate and transport in the environment. Elsevier, Academic Press, 338P
Hoseini P, Hoseini Y (2016) Changes in self-purification capacity of the Ahvaz Karun River in 2008 and 2014 using QUAL2Kw model. Amirkabir Journal of Civil and Environmental Engineering 49(1):35-45 (In Persian)
Jafarzadeh-Haghighi N, Tavasol M H, Barootkoob A (2005) Investigation of Karoon River water quality variations using Qual2E program. Journal of Iran-Water Resources Research 1(2):85-96 (In Persian)
Kannel P, Lee S, Lee Y, Kanel S, Pelletier G (2007) Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal. Journal of Ecological Modelling 202(3):503-517
Lar Consulting Engineers (2009) Identification, control and prevention of pollution of the Zarrineh River. Iran Environment Organization (In Persian)
Mathew M, Yao Y, Cao Y, Shodhan K, Ghosh I, Bucci V, Hellweger F (2011) Anatomy of an urban waterbody: A case study of Boston’s Muddy River. Journal of Environmental pollution 159(8):1996-2002
Mirbagheri A, Mahmood SH, Khezri M (2010) Modeling of nitrogen and phosphorus changes along the Chalus River in 2008 using Qual2k software. Journal of Civil Environmental Engineering 40(3):49-60 (In Persian)
Moriasi D, Arnold J, Van Liew M, Bingner R, Harmel R, Veith T (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3):885-900
Nazari H (2005) Effect of pollutant sources on water quality in Shafa River. M.Sc.Thesis, School of Civil & Environmental Engineering, University of Tarbiat Modares (In Persian)
Nooshadi N, Hatami Zadeh M (2011) Determination and simulation of water quality in the Kor River using Qul2k model. Iranian Journal of Irrigation & Drainage 3(4):338-349 (In Persian)
Pelletier G, Chapra S (2005) QUAL2Kw theory and documentation (version 5.1), A modeling framework for simulating river and stream water quality, retrieved 10 May 2005 from: http://www.ecy.wa.gov/programs/eap/ models
Pour-Karimi A (2006) Recognition of Gharagagh River polluting resources and its impact on river water quality using the QUAL2k model. M.Sc.Thesis, School of Civil & Environmental Engineering, University of Shiraz (In Persian)
Rafiee M, Ali A, Mohammad A, Moazed H, Lyon S, Jaafarzadeh N, Zahraie B (2014) A case study of water quality modeling of the Gargar River, Iran. Journal of Hydraulic Structures 1(2):10-22
Shahriari F (2010) The effect of water flow changes on Karoun River quality parameters using QUAL2k model. M.Sc.Thesis, School of water sciences, University of Shahid Chamran (In Persian)
Toluie Z (2013) Assessing the development of irrigation systems under pressure to increase the discharge of Zarrineh River into Urmia Lake. M.Sc.Thesis, School of Agricultural Engineering, University of Tarbiat Modares (In Persian)
USEPA (1986) Quality criteria for water. Gold book quality criteria, EPA 440/5-86-001. U.S. Environmental Protection Agency, Office of Water, Washington
USEPA (2000) Nutrient criteria technical guidance manual: rivers and streams. Washington
WERI (a) (2016) Determination of the environmental flow on wetlands and rivers of the Urmia lake basin. Hydraulic Studies, University of Tarbiat Modares (In Persian)
WERI (b) (2016) Determination of the environmental flow on wetlands and rivers of the Urmia lake basin. Hydrological Studies, University of Tarbiat Modares (In Persian)
WERI (c) (2016) Determination of the environmental project on wetlands and rivers of the Urmia lake basin. Ecological Studies, University of Tarbiat Modares (In Persian)
Ye H, Guo S, Li F, Li G (2013) Water quality evaluation in tidal river reaches of Liaohe River estuary, China using a revised QUAL2K model. Journal of Chinese Geographical Science 23(3):301-311
Zhang R, Qian X, Li H, Yuan X, Ye R (2012) Selection of optimal river water quality improvement programs using QUAL2K: A case study of Taihu Lake Basin, China. Science of the Total Environment 431:278-285