بررسی اثر تغییر اقلیم بر حداکثر بارش محتمل 24 ساعته در یک اقلیم نیمه‌مرطوب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری هواشناسی کشاورزی/گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 دانشیار / گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

3 دانشیار / بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

چکیده

در پژوهش اثر تغییر اقلیم بر مقادیر حداکثر بارش محتمل 24 ساعته (PMP24) در قسمتی از حوزه آبریز قره‌سو واقع در استان گلستان بررسی شد. به این منظور از داده‌های اقلیمی در مقیاس‌های زمانی ساعتی و روزانه طی دوره زمانی 2017- 1987 استفاده شد. جهت تولید داده‌های آینده از خروجی‌های مدل گردش عمومی جو (CanESM2) تحت سه سناریوی خوش‌بینانه (RCP 2.6)، حد وسط (RCP 4.5) و بدبینانه (RCP 8.5) و مدل ریزمقیاس‌نمایی آماری (SDSM) در دو دوره آینده نزدیک و دور استفاده گردید. مقادیر PMP24 با روش‌های همدیدی، استاندارد و تجدید نظر شده هرشفیلد در دوره‌های زمانی پایه و آینده تحت سه سناریو محاسبه شدند. مقدار PMP24 با استفاده از روش استاندارد Hershfield در دوره پایه 421 میلی‌متر محاسبه شد. این مقادیر تحت سناریوهای RCP، برای دوره آینده نزدیک 202، 228 و 213 و برای دوره آینده دور 216، 201 و 230 میلی‌متر به دست آمدند. نتیجه حاصل از روش تجدید نظر یافته Hershfield در دوره پایه 230 میلی‌متر بود. مقادیر PMP24 تحت سه سناریو در دوره آینده نزدیک 81، 85 و 76 و در دوره آینده دور 83، 80 و 79 میلی‌متر محاسبه شدند. مقدار PMP24 حاصل از روش همدیدی در دوره پایه 143 میلی‌متر به دست آمد. این مقادیر در آینده نزدیک 98، 105 و 109 و در آینده دور 129، 122 و 126 میلی‌متر به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Climate Change Impact on 24-h Probable Maximum Precipitation in a Sub-humid Climate

نویسندگان [English]

  • Zahra Afzali-Gorouh 1
  • Alireza Faridhosseini 2
  • Bahram Bakhtiari 3
1 Ph. D. Candidate in Agricultural Meteorology, Water Engineering Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2 Associate Professor, Water Engineering Department, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Associate Professor, Water Engineering Department, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

In this study, the impact of climate change on 24-h probable maximum precipitation (PMP24) was investigated in a part of Qareh-Su basin located in Golestan province. For this purpose, the daily and hourly climatic data during years 1987–2017 were applied. In order to generate future data, the outputs of CanESM2 model as a general circulation model (GCM) under three emission scenarios including optimistic (RCP 2.6), middle (RCP 4.5) and pessimistic (RCP 8.5) and statistical downscaling model (SDSM) were used in two near and far future periods. The PMP24 values were estimated using physical, Hershfield standard and revised methods in the baseline and future periods under the three scenarios. The PMP24 value was estimated 421 mm for the baseline period, using Hershfield standard method. These values under the three RCP scenarios were obtained 202, 228, and 213, for the near future and 216, 201, and 230 mm for the far future. The result of Hershfield revised method was 230 mm for the baseline period. The PMP24 values under the three scenarios were calculated 81, 85, and 76 mm for the near future, and 83, 80, and 79 mm for the far future. The PMP24 resulted from physical method was 143 mm for the baseline period. These values were 98, 105, and 109 for the near future, and 129, 122, and 126 mm for the far future period.

کلیدواژه‌ها [English]

  • Extreme rainfall
  • Widespread storms
  • maximum 24 h precipitation
  • Climate scenarios
Afrooz AH, Akbari H, Rakhshandehroo GR, and Pourtouiserkani A (2015) Climate change impact on probable maximum precipitation in chenar-rahdar river basin. Proceedings of the Watershed Management Symposium: 36-47
Afzali-Gorouh Z, Bakhtiari B and Qaderi K (2018) Probable maximum precipitation estimation in a humid climate. Natural Hazards and Earth System Science 18:3109-3119
Azizi G and Hanafi A (2011) Estimation of probable maximum precipitation by using Synoptic method. Arid Regions Geographic Studies 1(2):55-71 (In Persian)
Bakhtiari B, Afzali-Gorouh Z and Qaderi K (2016a) Probable maximum precipitation estimation using two different approaches of Hershdield’s method over Qareh-Su basin, Golestan provvince, Iran. Iran-Water Resources Research 12(1):56-67 (In Persian)
Bakhtiari B, Afzali Gorouh Z and Qaderi K (2016b) Designing PMP calculator for statistical estimation of probable maximum precipitation (Case study: selected stations in Gilan Province, Iran). Iranian Journal of Rainwater Catchment Systems 4(10):1-12 (In Persian)
Beauchamp J, Leconte R, Trudel M and Brissette F (2013) Estimation of the summer-fall PMP and PMF of a northern watershed under a changed climate. Water Resources Research 49(6):3852-3862
Chen X, Hossain F, and Leung LR (2017) Probable maximum precipitation in the U.S. Pacific Northwest in a changing climate. Water Resources Research 53(11):9600-9622
Chow VT (1951) A general formula for hydrologic frequency analysis. American Geophysic Union 32:231-237
Chylek P, Li J, Dubey MK, Wang M, and Lesins G (2011) Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmospheric Chemistry and Physics Discussions 11(8):22893-22907
Desa MN, Noriah AB, and Rakhecha PR (2001) Probable maximum precipitation for 24h duration over southeast Asian monsoon region- Selangor, Malaysia. Atmospheric Research 58(1):41-54
Fattahi E and Edraki M (2010) Estimation of probable maximum precipitation based on synoptic-convergence method in Bakhtiari river basin. Application of Natural Geography in the Environmental Programming
Ghahraman B (2008) Estimation of one day duration probable maximum precipitation over atrak watershed in Iran. Iranian Journal of Science and Technology 19(6):21-29
Ghahraman B, Hossein-Poor Tehrani M, Farahi G, and Davari K (2011) A comparative study for determination of PMP by some statistical methods in Atrak Watershed, Iran. Iran-Water Resources Research 7(2):61-70 (In Persian)
IPCC (2014) Climate change 2014: Synthesis report contribution of working groups I II and III to the fifth assessment report of the intergovernmental panel on climate change [Core Writing Team R K Pachauri and L A Meyer (eds )] IPCC Geneva Switzerland 151 pp.
Jahandideh Z (2017) Investigation of climate change effects on probable maximum precipitation (PMP) in Fars province. Water Engineering Department, Shahid Bahnar University of Kerman (In Persian)
Jakob D, Smalley R, Meighen J, Xuereb K, and Taylor B (2009) Series climate change and probable maximum precipitation. Australian Government, Bureau of Meteorology, Melbourne
Khalili A (1999) Investigation of record length impacts on 24-72 hour probable maximum precipitation across Iran. 2nd Regional Conference on Climate Change, Tehran (In Persian)
Kunkel KE, Karl TR, Easterling DR, Redmond K, Young J, Yin X, and Hennon P (2013) Probable maximum precipitation and climate change. Geophysical Research Letters 40(7):1402-1408
Lagos-Zúñiga MA and Vargas M X (2014) PMP and PMF estimations in sparsely-gauged Andean basins and climate change projections. Hydrological Sciences Journal 59(11):2027-2042, Available at: http://www.tandfonline.com/doi/abs/10.1080/02626667.2013.877588
Lee O and Kim S (2018) Estimation of future probable maximum precipitation in Korea using multiple regional climate models. Water (Switzerland) 10(637):1-17
Ministry of Energy (2013) Manual on estimation of probable maximum precipitation (PMP) and depth-area-duration curves (DAD). (In Persian)
Motallebi M and Saghafian B (2013) Investigation of climate change impact on probable maximum precipitation in Golestan dam basin. International Conference of Civil, Architecture and Sustainable Urban Development (In Persian)
Nathan R, Jordan P, Scorah M, Lang S, Kuczera G, Schaefer M, and Weinmann E (2016) Estimating the exceedance probability of extreme rainfalls up to the probable maximum precipitation. Journal of Hydrology 543:706-720
Rahimi J, Ebrahimpour M, and Khalili A (2013) Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoretical and Applied Climatology 112(3-4):409-418
Rahimi J, Malekian A, and Khalili A (2018) Climate change impacts in Iran: assessing our current knowledge. Theoretical and Applied Climatology 1-20, Available at: https://doi.org/10.1007/s00704-018-2395-7
Ramak Z, Porhemmat J, Sedghi H, Fattahi E, and Lashni-Zand M (2017) The climate change effect on probable maximum precipitation in a catchment: A case study of the Karun river catchment in the Shalu bridge site (Iran). Russian Meteorology and Hydrology 42(3):204-211
Rastogi D, Kao SC, Ashfaq M, Mei R, Kabela ED, Gangrade S, Naz BS, Preston BL, Singh N, and Anantharaj VG (2017) Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama-Coosa-Tallapoosa River Basin. Journal of Geophysical Research 122(9):4808-4828
Rezaee-pazhand H and Ghahraman B (2006) Estimating maximum daily precipitation by multi-station method: A Case study of North Khorasan. Iran-Water Resources Research 2(1):45-53 (In Persian)
Rousseau AN, Klein IM, Freudiger D, Gagnon P, Frigon A, and Ratté-Fortin C (2014) Development of a methodology to evaluate probable maximum precipitation (PMP) under changing climate conditions: Application to southern Quebec, Canada. Journal of Hydrology 519(PD):3094-3109
Shafiei M and Ghahraman B (2009) Spatial distribution of probable maximum precipitation for 24 h duration over Ghareh Ghum watershed. Iranian Journal of irrigation and drainage 3(2):50-59 (In Persian)
Stratz SA and Hossain F (2014) Probable maximum precipitation in a changing climate: Implications for dam design. Journal of Hydrologic Engineering 19(12)
Taei Semiromi S, Moradi HR, and Khodagholi M (2014) Simulation and prediction some of climatic variables by multiple linear model SDSM and atmospheric general circulation models (Case study: Neishabour). Journal of Human and Environment 12(28):1-16 (In Persian)
Wilby RL and Dawson CW (2013) The statistical downscaling model: Insights from one decade of application. International Journal of Climatology 33(7):1707-1719
WMO (2009) Manual for depth-area-duration analysis of storm precipitation. Third Edition Publication 1045. World Meteorological Organization. Geneva