بررسی اثر توپوگرافی زمین بر ضریب رواناب و سیلاب دامنه های حوضه‌ آبخیز با استفاده از TOPMODEL

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد استهبان-گروه مهندسی عمران

2 دانشگاه آزاد اسلامی واحد استهبان- گروه مهندسی عمران

3 دانشگاه آزاد اسلامی واحد استهبان- باشگاه پژوهشگران جوان

چکیده

ضریب رواناب در روش مشهور استدلالی برای محاسبه سیلاب طراحی و در روش بیلان برای محاسبه نفوذ و ارتفاع بارش مازاد استفاده می گردد. ضریب رواناب حوضه درصدی از بارندگی است که به رواناب تبدیل می‌شود. مقدار ضریب رواناب به ویژگی‌های دامنه‌های حوضه مانند توپوگرافی، شیب، بافت خاک، پوشش گیاهی و بارش بستگی دارد که این ویژگی‌ها در زمان و مکان در سطح حوضه تغییر می‌کنند. TOPMODEL یک مدل نیمه توزیعی است که در آن توپوگرافی دامنه و سطوح مشارکت‌کننده در تولید رواناب نقش اصلی را ایفا کرده و قابلیت محاسبه مقدار کمبود رطوبت خاک در هر نقطه در طول دامنه را دارد. در این تحقیق با استفاده از TOPMODEL اثر توپوگرافی دامنه‌ بر روی نفوذ، ضریب رواناب و تغییرات مکانی آن طبق توپوگرافی مورد بررسی قرار گرفت. برای این منظور ابتدا پارامترهای TOPMODEL و معادلات آن برای دامنه‌های مرکب توسعه‌ یافته و با ترکیب مدل SCS-CN، تأثیر هندسه توپوگرافی دامنه‌های مرکب روی ضریب رواناب مورد بررسی قرار گرفت. هیدروگراف رواناب دامنه‌ها با استفاده از روش استدلالی ترکیب شده با مدل زمان-مساحت مرکب نیز مورد بررسی قرار گرفت. بر اساس نتایج، دامنه‌های واگرا ضریب رواناب و سیلاب کمتری نسبت به دامنه‌های موازی و همگرا دارند، همچنین دامنه‌های محدب نیز نسبت به دامنه‌های صاف و مقعر ضریب رواناب و سیلاب کمتری دارند. رواناب دامنه همگرا-مقعر 80 درصد بیشتر از دامنه واگرا-محدب است.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Topography on Runoff Coefficient and Flood of hillslopes Watershed Using TOPMODEL

نویسندگان [English]

  • Mohammad Hossain Pishvaei 1
  • Tooraj Sabzevari 2
  • Reza Mohammadpour 2
  • Shabnam Noroozpour 3
1 Islamic Azad University of Estahban, Department of Civil Engineering
2 Islamic Azad Univercity of Estahban, Department of Civil Engineering
3 Young Researchers and Elite Club, Estahban Branch, Islamic Azad University, Estahban, Iran.
چکیده [English]

Runoff coefficient (RC) is included in the rational method for computation of runoff, and is used in water balance to measure infiltration and the excess rainfall. The RC is the percentage of rainfall which is made runoff, and depends on topography, slope, soil texture, plant coverage, and rainfall. These features alter temporally and spatially along the watershed. A semi-distributive model, TOPMODEL is such that the topography of the hillslope and the contributing levels play the main role in runoff generation. It is also capable of computing soil moisture deficit at each point along the hillslope. In the current research, the effects of the hillslope topography on infiltration, temporally and spatially, and its spatial changes are examined using TOPMODEL and according to the topography. To this end, first, the parameters of TOPMODEL and its equations for complex hillslopes were developed. By combining with SCS-CN model, the impact of geometry of complex hillslopes on RC was investigated. The runoff hydrograph of the hillslopes was scutinized using the rational method combined with the complex time-area model. According to the results, the divergent hillslopes have a smaller RC, as well as flood, than the parallel and convergent ones. Also, the convex hillslopes have smaller RC, as well as flood, with respect to the straight and concave ones. As for the convergent-concave hillslopes, the runoff is 80% more than that for the divergent-convex.

کلیدواژه‌ها [English]

  • Runoff Coefficients
  • TOPMODEL
  • Complex Hillslopes
  • SCS-CN
  • Time-Area
Appels WM, Bogaart PW, van der Zee SE (2011) Influence of spatial variations of microtopography and infiltration on surface runoff and field scale hydrological connectivity. Advances in Water Resources, 34(2):303–313
Aryal SK, O’Loughlin EM, Mein RG (2005) A similarity approach to determine response times to steady-state saturation in landscapes. Advances in Water Resources 28(2):99–115
Azizian A, Shokoohi A (2015) Development of a new method for estimation of SCS curve number based on saturation excess concept. Iran-Water Resources Research 10(3), Winter 2015 (IR-WRR) (In Persian)
Beven K, Kirkby M (1979) A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Journal 24(1):43-69
Beven K (1995) TOPMODEL in: VP singh (Ed.) computer models of watershed hydrology. Water Resource Publications 627-668
Chaplot V, Le Bissonnais Y (2000) Field measurements of interrill erosion under different slopes and plot sizes. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 25(2):145–153
DePloey J, Savat J, Moeyersons J (1976) The differential impact of some soil loss factors on flow, runoff creep and rainwash. Earth Surface Processes 1(2):151–161
Eldridge DJ, Wang L, Ruiz-Colmenero M (2015) Shrub encroachment alters the spatial patterns of infiltration. Ecohydrology 8(1):83–93
Fan Y, Bras RL (1998) Analytical solutions to hillslope subsurface storm flow and saturation overland flow. Water Resources Research 34(4):921–7
Fox DM, Bryan RB, Price AG (1997) Theinfluenceofslopeangle on final infiltration rate for interrill conditions. Geoderma 80(1–2):181–194
Govers G (1991) Afield study on topographical and topsoil effects on runoff generation. Catena 18(1):91–111
Grosh JL, Jarrett AR (1994) Interrill erosion and runoff on very steep slopes. Transactions of the ASAE 37(4): 1127–1133
Hilberts AGJ, Van Loon EE, Troch PA, Paniconi C (2004) The hill slope-storage Boussinesq model for non-constant bedrock slope. Journal of Hydrology 291(3-4):160-173
Hilberts A, Troch PA, Paniconi C, Boll J (2007) Low dimensional modeling of hillslope subsurface flow: The relationship between rainfall, recharge, and unsaturated storage. Water Resources Research, 43 W03445
Jaynes DB, Hunsaker DJ (1989) Spatial and temporal variability of water content and infiltration on a flood irrigated field. Transactions of the ASAE 32(4):1229-1238
Lal R (1976) Soil erosion of Alfisols in western Nigeria: Effects of slope, crop rotation and residue management. Geoderma 16:363–375
Mah MGC, Douglas LA, Ringrose-Voase AJ (1992) Effects of crust development and surface slope on erosion by rainfall. Soil Science 154(1):37–43
Merz R, Blöschl G, Parajka J (2006) Spatio-temporal variability of event runoff coefficients. Journal of Hydrology 331(3-4):591-604
Nachabe MH (2006) Equivalence between TOPMODEL and the NRCS curve number method in predicting variable runoff source areas 1. JAWRA Journal of the American Water Resources Association 42(1):225–235
Noroozpour S, Saghafian B, Akhondali AM, Radmanesh F (2013) Travel time of curved parallel hillslopes. Hydrology Research 45(2):190-199
Philip JR (1991a) Hillslope infiltration: Planar slopes. Water Resources Research 27(1):109–117
Philip JR (1991b) In filtration and downslope unsaturated flows in concave and convex topographies. Water Resources Research 27:1041–1048
Poesen J (1984) The in fluence of slope angle on in filtration rate and Hortonian overland flow. Zeitschrift für Geomorpholgie, Supplement, 49:117–131
Porhemmat R, Nasseri HR, Porhemmat J, Molaei A (2013) Estimation of runoff coefficient in karstic area (A case study: Delibajak Sepidar, Kohgiluyeh and Boyer-Ahmad province). Iran-Water Resources Research 9(1) (In Persian)
Sabzevari T, Saghafian B, Talebi A, Ardakanian R (2013) Time of concentration of surface flow in complex hillslopes. Journal of Hydrology and Hydromechanics 61(4):269-277
Sabzevari T, Noroozpour S (2014) Effects of hillslope geometry on surface and subsurface flows. Hydrogeology Journal 22(7):1593–1604
Sabzevari T, Noroozpour S, Pishvaei MH (2015) Effects of geometry on runoff time characteristics and time-area histogram of hillslopes. Journal of Hydrology 531:638–648
Saghafian B, Julien PY (1995) Time to equilibrium for spatially variable watersheds. Journal of Hydrology 172(1-4):231-245
Saghafian B, Noroozpour S, Kiani M, Nasab AR (2016) A coupled Modclark-curve number rainfall-runon-runoff model. Arabian Journal of Geosciences 9(4):277
Sharma KD, Singh HP, Pareek OP (1983) Rainwater infiltration into a bare loamy sand. Hydrological Sciences Journal 28(3):417–424
Sharma KD, Pareek OP, Singh HP (1986) Microcatchment water harvesting for raising Jujube orchards in an arid climate. Transactions of the ASAE 29(1):112–0118
Sherman LK (1932) Streamflow from rainfall by the unit-graph method. Eng. News Record 108:501-505
Sivapalan M, Beven K, Wood EF (1987) On hydrologic similarity: 2. A scaled model of storm runoff production. Water Resources Research 23(12):2266–2278
Sriwongsitanon N, Taesombat W (2011) Effects of land cover on runoff coefficient. Journal of Hydrology 410(3–4):226-238
Talebi A, Troch PA, Uijlenhoet R (2008) A steady-state analytical slope stability model for complex hillslopes. Hydrological Processes 22(4):546–553
Tricker AS (1981) Spatial and temporal patterns of infiltration. Journal of Hydrology 49(3–4):261–277
Troch PA, Van Loon E, Hilberts A (2002) Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow. Advances in Water Resources 25(6):637–649
Troch PA, Paniconi C, Van Loon E (2003) Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complexhillslopes: 1. formulation and characteristic response. Water Resources Research 39(11), 1316
Troch PA, Van Loon AH, Hilberts AG (2004) Analytical solution of the linearized hillslope storage Boussinesq equation for exponential hillslope width functions. Water Resources Research 40(8)
Ward RC, Robinson M (1967) Principles of hydrology. New York: McGraw-Hill, No. 551.49/W262