ارزیابی اثر پارامترسازی فیزیکی مدل WRF در شبیه‌سازی وقایع بارشی سنگین منجر به وقوع سیلاب در نواحی خشک و نیمه خشک (مطالعه موردی: استان اصفهان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهشکده مطالعات و تحقیقات منابع آب، مؤسسه تحقیقات آب، وزارت نیرو، تهران، ایران.

2 کارشناس پژوهشی پژوهشکده مطالعات و تحقیقات منابع آب، مؤسسه تحقیقات آب، وزارت نیرو، تهران، ایران.

چکیده

وقوع رویدادهای فرین جوی در دهه‌های گذشته به دلیل گرم شدن سیاره زمین به طور قابل توجهی افزایش یافته است. در حالی که کنترل این رویدادها غیرممکن است، ارائه پیش‌بینی‌های مناسب جوی می‌تواند به آمادگی بهتر جامعه برای مواجهه با رخدادهای فرین جوی کمک کند. مدل‌های منطقه‌ای پیش‌­بینی عددی وضع هوا به‌عنوان یک ابزار مناسب برای پیش‌­بینی رویدادهای فرین جوی به‌طور گسترده به کار گرفته می‌شوند. این مطالعه به حساسیت‌­سنجی مدل WRF نسبت به پامتر‌سازی فیزیکی شامل طرح‌واره­‌های مختلف خردفیزیک، لایه مرزی سیاره‌ای، تابش طول موج کوتاه و بلند، لایه سطحی و همرفت در پیش‌بینی بارش در استان اصفهان به عنوان یک ناحیه خشک و نیمه­‌خشک می‌پردازد. مدل در دو دامنه (اول) 12 و (دوم) 4 کیلومتری و با استفاده از داده‌های GFS به‌عنوان شرایط اولیه و مرزی برای 17 رخداد بارشی فرین در دوره 2018-2011 و با پیکربندی­های مختلف اجرا شد. برای ارزیابی خروجی مدل WRF از داده‌های 77 ایستگاه‌ باران‌سنجی در منطقه مورد مطالعه‏ استفاده شد. در نهایت، جهت ارزیابی کارایی مدل WRF از چندین معیار آماری و توزیع بارش مکانی و زمانی در منطقه مورد مطالعه، استفاده شد. نتایج این مطالعه نشان داد که انتخاب طرح‌واره‌های فیزیکی مناسب برای پارامترهای تابش موج کوتاه، بلند و لایه سطحی می‌تواند دقت پیش‎‌بینی‌ بارش در دامنه دوم را افزایش دهد. هرچند که مهم‌ترین طرح‌واره در پیش‌بینی بارش، طرح­‌واره خردفیزیک است. به‌طوریکه انتخاب طرح‌واره مناسب خردفیزیک می‌تواند تا حد زیادی دقت پیش‌بینی بارش در یک منطقه را بهبود بخشد. در محدوده استان اصفهان طرح‌واره‌های Revised Monin-Obokhov، Dudhia، RRTMG، NSSL، TiedTKE و BouLac به ترتیب برای پارامترهای فیزیکی لایه سطحی، تابش طول موج کوتاه و بلند، خردفیزیک، همرفت و لایه مرزی سیاره‌ای دارای بیشترین کارایی در پیش‌بینی بارش بودند. بنابراین استفاده از این طرح‌واره‌ها جهت استفاده در مطالعات آتی با هدف پیش‌بینی بارش و استفاده در سامانه‌های پیش‌بینی سیلاب، پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessing the effects of Physical Parametrization of the WRF Model in Simulating Flood-Inducing Rainfall in Arid and Semi-Arid Areas (Case Study: Isfahan Province)

نویسندگان [English]

  • Mohamad Saaed Najafi 1
  • Somaye Imani 2
  • Vahid Shokri Kuchak 2
1 Assistant Professor, Water Research Institute, Ministry of Energy, Tehran, Iran.
2 Research Fellow, Water Research Institute, Ministry of Energy, Tehran, Iran.
چکیده [English]

Extreme weather events are significantly more frequent in the past decades due to global warming. While preventing these events from happening is impossible, providing accurate weather forecasts can help the society to be better prepared for them. Regional climate models have been widely applied locally as a robust forecast and monitoring tool for extreme weather events. This study assesses the performance of the Weather Research and Forecasting (WRF) model in simulating different heavy precipitation events across Isfahan province. For this, WRF parametrisation was established considering different versions of the microphysics, planetary boundary layer (PBL), short and long wavelength radiation, surface layer and convection scheme. The model was implemented in two nests of 12 and 4 km, using the GDAS-FNL reanalysis data as initial and boundary conditions for 17 extreme rainfall events in 2011-2018 and with different combinations of the schemes. The daily precipitation observational records from 77 rain gauge stations were applied to validate the WRF output. Finally, several statistical goodness-of-fit measures and spatial and temporal precipitation distributions were used to evaluate WRF performance. The result showed that the appropriate physical scheme for the parameterisation of short and long-wavelength radiation and surface layer could increase the performance of precipitation forecasts in the 4 km grid (high resolution), the microphysics was nontheless more crucial than other parameterisations. In Isfahan province, the Revised Monin-Obokhov, Dudhia, RRTMG, NSSL, TiedTKE, and BouLac schemes performed better in simulating precipitation respectively for parametrisation of surface layer, short and long wavelength radiation, microphysics, convection, and planetary boundary layer. Therefore, This optimal combination of parameterisations is suggested for further studies with the aim of precipitation forecasting and using them in flood forecast systems.

کلیدواژه‌ها [English]

  • Arid and Semi-Arid Climate
  • Extreme Precipitation
  • Numerical Weather Forecasting
  • Physical Parameterization
Anderson ML, Chen Z-Q, Kavvas ML, and Feldman A (2002) Coupling HEC-HMS with atmospheric models for prediction of watershed runoff. Journal of Hydrologic Engineering. American Society of Civil Engineers 7(4):312–318
Arkian F, Mashatan N, Katiraie Borojerdi PS, and Mirzaei Haji Baghlo E (2015) Evaluation of precipitation forecasts of WRF model for daily heavy rain in Qazvin Province during 2002-2011. Journal of Marine Science & Technology Research 9(4):88-102 (In Persian)
Bougeault P and Lacarrere P (1989) Parameterization of orography-induced turbulence in a mesobeta-scale model. Monthly Weather Review 117(8):1872–1890
Bretherton CS and Park S (2009) A new moist turbulence parameterisation in the Community Atmosphere Model. Journal of Climate 22(12):3422–3448
Chou MD and Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Technical Memorandum 104606, 3, 85pp
Chou MD, Suarez MJ, Liang XZ, Yan MMH (2001) A thermal infrared radiation parameterization for atmospheric studies. NASA Technical Memorandum 104606, 19, 68pp
Collischonn W, Tucci CEM, Clarke RT, Chou SC, Guilhon LG, Cataldi M, and Allasia D (2007) Medium-range reservoir inflow predictions based on quantitative precipitation forecasts. Journal of Hydrology. Elsevier 344(1–2):112–122
Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Sciences 46(20):3077–3107
Eaton B (2011) User’s guide to the Community Atmosphere Model CAM-5.1. NCAR. URL http://www. cesm. ucar. edu/models/cesm1. 0/cam
Elguindi N, Bi XQ, Giorgi F, Nagarajan B, Pal J, Solmon F, Rauscher S, Zakey A, and Giuliani G (2011) Regional Climatic Model RegCM User Manual Version 4.1. The Abdus Salam International Centre for Theoretical Physics Strada Costiera, Trieste
Emmanouil G, Vlachogiannis D, and Sfetsos A (2021) Exploring the ability of the WRF-ARW atmospheric model to simulate different meteorological conditions in Greece. Atmospheric Research. Elsevier 247:105226
Fovell RG and Su H (2007) Impact of cloud microphysics on hurricane track forecasts. Geophysical Research Letters, Wiley Online Library 34(24)
Frasera D, Tange P, and Kama A (2010) Early warning and on-line mapping for flood events. Geoscience and Remote Sensing: New Achievements. BoD–Books on Demand 147
Gholami S, Ghader S, Khaleghi Zavareh H, & Ghafarian P (2019) Sensitivity of the WRF model surface wind simulations to initial conditions and planetary boundary layer parameterization schemes (case study: over Persian Gulf). Iranian Journal of Geophysics 13(1):14-31
Grell GA and Dévényi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, Wiley Online Library 29(14):31–38
Grenier H and Bretherton CS (2001) A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Monthly Weather Review 129(3):357–377
Habets F, LeMoigne P and Noilhan J (2004) On the utility of operational precipitation forecasts to served as input for streamflow forecasting. Journal of Hydrology 293(1–4):270–288
Han J and Pan H-L (2011) Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Weather and Forecasting. American Meteorological Society 26(4):520–533
Hong S-Y, Dudhia J, and Chen S-H (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review, American Meteorological Society 132(1):103–120
Hong S-Y and Pan H-L (1998) Convective trigger function for a mass-flux cumulus parameterization scheme. Monthly Weather Review 126(10):2599–2620
Hopson TM and Webster PJ (2010) A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: Forecasting severe floods of 2003–07. Journal of Hydrometeorology 11(3):618–641
Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, and Collins WD (2008) Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres. Wiley Online Library 113(D13)
Janjić ZI (1994) The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, American Meteorological Society 122(5):927–945
Jankov I, Gallus Jr WA, Segal M, and Koch SE (2007) Influence of initial conditions on the WRF–ARW model QPF response to physical parameterization changes. Weather and Forecasting 22(3):501–519
Jankov I, Gallus WA, Segal M, Shaw B, and Koch SE (2005) The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Weather and Forecasting, American Meteorological Society 20(6):1048–1060
Jee J-B and Kim S (2017) Sensitivity study on high-resolution WRF precipitation forecast for a heavy rainfall event. Atmosphere 8(6):96-103
Kain JS (2004) The Kain–Fritsch convective parameterization: An update. Journal of Applied Meteorology 43(1):170–181
Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulations. On the Distribution and Continuity of Water Substance in Atmospheric Circulations 1–84
Khansalari S, Ranjbar-Saadatabadi A, Fazel-Rastgar F, and Raziei T (2021) Synoptic and dynamic analysis of a flash flood-inducing heavy rainfall event in arid and semi-arid central-northern Iran and its simulation using the WRF model. Dynamics of Atmospheres and Oceans 93:101198
Lim K-SS and Hong S-Y (2010) Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Monthly Weather Review, American Meteorological Society 138(5):1587–1612
Lin Y-L, Farley RD, and Orville HD (1983) Bulk parameterization of the snow field in a cloud model. Journal of Applied Meteorology and Climatology 22(6):1065–1092
Lin Y and Colle BA (2011) A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Monthly Weather Review, American Meteorological Society 139(3):1013–1035
Lowrey MRK and Yang Z-L (2008) Assessing the capability of a regional-scale weather model to simulate extreme precipitation patterns and flooding in central Texas. Weather and Forecasting, American Meteorological Society 23(6):1102–1126
Merino A, García-Ortega E, Navarro A, Sánchez J L, and Tapiador F J (2022) WRF hourly evaluation for extreme precipitation events. Atmospheric Research 274:106215
Milbrandt JA and Yau MK (2005) A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. Journal of the Atmospheric Sciences, American Meteorological Society 62(9):3065–3081
Miller RL (2023) Managed diversion lead time effects on flood response in a tidal freshwater river. Journal of Flood Risk Management, Wiley Online Library, e12917
Monin AS and Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contributions of the Geophysical Institute of the Slovak Academy of Sciences 24:163-187
Moradi S, Javanmard S, Ghader S, Azadi M, and Gharayloo M (2020) The most effective scheme in improving the performance of the WRF model for precipitation over northwest Iran. Journal of Meteorology and Atmospheric Science, Atmospheric Science and Meteorological Research Institute 3(3):188-200 (In Persian)
Nakanishi M and Niino H (2004) An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Boundary-Layer Meteorology, Springer 112:1–31
Nasrollahi N, AghaKouchak A, Li J, Gao X, Hsu K, and Sorooshian S (2012) Assessing the impacts of different WRF precipitation physics in hurricane simulations. Weather and Forecasting 27(4):1003–1016
Nooni IK, Tan G, Hongming Y, Saidou Chaibou AA, Habtemicheal BA, Gnitou GT, and Lim Kam Sian KTC (2022) Assessing the performance of WRF model in simulating heavy precipitation events over East Africa using satellite-based precipitation product. Remote Sensing
Nyeko M (2015) Hydrologic modelling of data scarce basin with SWAT model: Capabilities and limitations. Water Resources Management 29:81–94
Ozkaya A and Akyurek Z (2020) WRF-hydro model application in a data-scarce, small and topographically steep catchment in Samsun, Turkey. Arabian Journal for Science and Engineering 45(5):3781–3798
Pegahfar N, Gharaylou M, and Shoushtari MH (2022) Assessing the performance of the WRF model cumulus parameterization schemes for the simulation of five heavy rainfall events over the Pol-Dokhtar, Iran during 1999–2019. Natural Hazards 112(1):253–279
Pennelly C, Reuter G, and Flesch T (2014) Verification of the WRF model for simulating heavy precipitation in Alberta. Atmospheric Research 135:172–192
Pleim JE (2007) A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. Journal of Applied Meteorology and Climatology, American Meteorological Society 46(9):1383–1395
Rogelis MC and Werner M (2018) Streamflow forecasts from WRF precipitation for flood early warning in mountain tropical areas. Hydrology and Earth System Sciences, Copernicus GmbH 22(1):853–870
Rogers E, Black T, Ferrier B, Lin Y, Parrish D, and DiMego G (2001) Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. NWS Technical Procedures Bulletin 488:15
Shin HH and Hong S-Y (2011) Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Boundary-Layer Meteorology 139:261–281
Skamarock WC, Klemp JB, and Dudhia J (2001) Prototypes for the WRF (Weather Research and Forecasting) model. Preprints, Ninth Conf. Mesoscale Processes, J11–J15, Amer. Meteorol. Soc., Fort Lauderdale, FL
Thompson G, Field PR, Rasmussen RM, and Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Monthly Weather Review, American Meteorological Society 136(12):5095–5115
Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Review 117(8):1779–1800
Valappil VK, Kedia S, Dwivedi AK, Pokale SS, Islam S, and Khare MK (2023) Assessing the performance of WRF ARW model in simulating heavy rainfall events over the Pune region: In support of operational applications. Meteorology and Atmospheric Physics 135(2):16
Wild M, Ohmura A, Gilgen H, Morcrette JJ, Slingo A (2001) Downward longwave radiation in general circulation models. Journal of Climate 14:3227–3239.
Yazdanpanah Gharaei F, PourrezaBilondi M, Mianabadi A, Babaei M, and Imani Amirabad S (2023) Evaluation of rainfall simulation using WRF/WRF-Hydro model (case study: Abol-Abbas basin). Advanced Technologies in Water Efficiency 2(4):1-14 (In Persian)
Yucel I, Onen A, Yilmaz KK, and Gochis DJ (2015) Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. Journal of Hydrology, Elsevier B.V. 523:49–66
Zeyaeyan S, Fattahi E, Ranjbar SaadatAbadi A, Azadi M, and Vazifedoust M (2017) Evaluating the effect of physics schemes in WRF simulations of summer rainfall in north west Iran. Climate, MDPI 5(3):48
Ziegler CL (1985) Retrieval of thermal and microphysical variables in observed convective storms. Part 1: Model development and preliminary testing. Journal of Atmospheric Sciences 42(14):1487–1509